{"title":"基于 MXene 的无酶电化学葡萄糖传感技术的最新进展","authors":"Phan Gia Le, Sungbo Cho","doi":"10.1007/s13206-024-00157-z","DOIUrl":null,"url":null,"abstract":"<p>Diabetes mellitus is now on the rise worldwide, drawing a lot of attention from scientists. Well-uncontrolled diabetes leads to many serious diseases, including cardiovascular, ophthalmic, and nephrotic. It also caused 6.7 million deaths by 2021 and put a strain on the healthcare system. Therefore, developing useful methods for precisely diagnosing the current glucose concentration can serve as a gold standard for future treatment of diabetes. The classification of electrochemical glucose sensors with and without enzymes has been researched and developed. Among them, the use of enzymes in sensor fabrication results in high costs and easy denaturation in extreme conditions, whereas an enzyme-free approach can overcome these disadvantages and extend life expectancy. To support this, diverse nanomaterials were used, including MXene as an emerging material with favorable physiochemical properties that can be adapted for nonenzymatic electrochemical glucose sensor fabrication. In this study, diabetic disease, synthesis and application of MXene, and electrochemical biosensor were discussed. The application of MXene was thoroughly researched using recent representative publications. Conclusions and prospects for the MXene-based nonenzymatic electrochemical sensor are also explored and discussed.</p>","PeriodicalId":8768,"journal":{"name":"BioChip Journal","volume":"81 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Developments in MXene-Based Enzyme-Free Electrochemical Glucose Sensing\",\"authors\":\"Phan Gia Le, Sungbo Cho\",\"doi\":\"10.1007/s13206-024-00157-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diabetes mellitus is now on the rise worldwide, drawing a lot of attention from scientists. Well-uncontrolled diabetes leads to many serious diseases, including cardiovascular, ophthalmic, and nephrotic. It also caused 6.7 million deaths by 2021 and put a strain on the healthcare system. Therefore, developing useful methods for precisely diagnosing the current glucose concentration can serve as a gold standard for future treatment of diabetes. The classification of electrochemical glucose sensors with and without enzymes has been researched and developed. Among them, the use of enzymes in sensor fabrication results in high costs and easy denaturation in extreme conditions, whereas an enzyme-free approach can overcome these disadvantages and extend life expectancy. To support this, diverse nanomaterials were used, including MXene as an emerging material with favorable physiochemical properties that can be adapted for nonenzymatic electrochemical glucose sensor fabrication. In this study, diabetic disease, synthesis and application of MXene, and electrochemical biosensor were discussed. The application of MXene was thoroughly researched using recent representative publications. Conclusions and prospects for the MXene-based nonenzymatic electrochemical sensor are also explored and discussed.</p>\",\"PeriodicalId\":8768,\"journal\":{\"name\":\"BioChip Journal\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioChip Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13206-024-00157-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioChip Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13206-024-00157-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Recent Developments in MXene-Based Enzyme-Free Electrochemical Glucose Sensing
Diabetes mellitus is now on the rise worldwide, drawing a lot of attention from scientists. Well-uncontrolled diabetes leads to many serious diseases, including cardiovascular, ophthalmic, and nephrotic. It also caused 6.7 million deaths by 2021 and put a strain on the healthcare system. Therefore, developing useful methods for precisely diagnosing the current glucose concentration can serve as a gold standard for future treatment of diabetes. The classification of electrochemical glucose sensors with and without enzymes has been researched and developed. Among them, the use of enzymes in sensor fabrication results in high costs and easy denaturation in extreme conditions, whereas an enzyme-free approach can overcome these disadvantages and extend life expectancy. To support this, diverse nanomaterials were used, including MXene as an emerging material with favorable physiochemical properties that can be adapted for nonenzymatic electrochemical glucose sensor fabrication. In this study, diabetic disease, synthesis and application of MXene, and electrochemical biosensor were discussed. The application of MXene was thoroughly researched using recent representative publications. Conclusions and prospects for the MXene-based nonenzymatic electrochemical sensor are also explored and discussed.
期刊介绍:
BioChip Journal publishes original research and reviews in all areas of the biochip technology in the following disciplines, including protein chip, DNA chip, cell chip, lab-on-a-chip, bio-MEMS, biosensor, micro/nano mechanics, microfluidics, high-throughput screening technology, medical science, genomics, proteomics, bioinformatics, medical diagnostics, environmental monitoring and micro/nanotechnology. The Journal is committed to rapid peer review to ensure the publication of highest quality original research and timely news and review articles.