Mary 分区的高阶同余式

IF 0.6 3区 数学 Q3 MATHEMATICS
Błażej Żmija
{"title":"Mary 分区的高阶同余式","authors":"Błażej Żmija","doi":"10.1007/s10998-024-00579-0","DOIUrl":null,"url":null,"abstract":"<p>For a sequence <span>\\(M=(m_{i})_{i=0}^{\\infty }\\)</span> of integers such that <span>\\(m_{0}=1\\)</span>, <span>\\(m_{i}\\ge 2\\)</span> for <span>\\(i\\ge 1\\)</span>, let <span>\\(p_{M}(n)\\)</span> denote the number of partitions of <i>n</i> into parts of the form <span>\\(m_{0}m_{1}\\cdots m_{r}\\)</span>. In this paper we show that for every positive integer <i>n</i> the following congruence is true: </p><span>$$\\begin{aligned} p_{M}(m_{1}m_{2}\\cdots m_{r}n-1)\\equiv 0\\ \\ \\left( \\textrm{mod}\\ \\prod _{t=2}^{r}\\mathcal {M}(m_{t},t-1)\\right) , \\end{aligned}$$</span><p>where <span>\\(\\mathcal {M}(m,r):=\\frac{m}{\\textrm{gcd}\\big (m,\\textrm{lcm}(1,\\ldots ,r)\\big )}\\)</span>. Our result answers a conjecture posed by Folsom, Homma, Ryu and Tong, and is a generalisation of the congruence relations for <i>m</i>-ary partitions found by Andrews, Gupta, and Rødseth and Sellers.\n</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"93 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High order congruences for M-ary partitions\",\"authors\":\"Błażej Żmija\",\"doi\":\"10.1007/s10998-024-00579-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a sequence <span>\\\\(M=(m_{i})_{i=0}^{\\\\infty }\\\\)</span> of integers such that <span>\\\\(m_{0}=1\\\\)</span>, <span>\\\\(m_{i}\\\\ge 2\\\\)</span> for <span>\\\\(i\\\\ge 1\\\\)</span>, let <span>\\\\(p_{M}(n)\\\\)</span> denote the number of partitions of <i>n</i> into parts of the form <span>\\\\(m_{0}m_{1}\\\\cdots m_{r}\\\\)</span>. In this paper we show that for every positive integer <i>n</i> the following congruence is true: </p><span>$$\\\\begin{aligned} p_{M}(m_{1}m_{2}\\\\cdots m_{r}n-1)\\\\equiv 0\\\\ \\\\ \\\\left( \\\\textrm{mod}\\\\ \\\\prod _{t=2}^{r}\\\\mathcal {M}(m_{t},t-1)\\\\right) , \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\mathcal {M}(m,r):=\\\\frac{m}{\\\\textrm{gcd}\\\\big (m,\\\\textrm{lcm}(1,\\\\ldots ,r)\\\\big )}\\\\)</span>. Our result answers a conjecture posed by Folsom, Homma, Ryu and Tong, and is a generalisation of the congruence relations for <i>m</i>-ary partitions found by Andrews, Gupta, and Rødseth and Sellers.\\n</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00579-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00579-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于整数序列 \(M=(m_{i})_{i=0}^{infty }\) ,使得 \(m_{0}=1\), \(m_{i}\ge 2\) for \(i\ge 1\), 让 \(p_{M}(n)\) 表示把 n 分成 \(m_{0}m_{1}\cdots m_{r}\) 形式的部分的个数。本文将证明,对于每一个正整数 n,下面的同余式都是真的:$$begin{aligned} p_{M}(m_{1}m_{2}\cdots m_{r}n-1)\equiv 0\left( \textrm{mod}\ \prod _{t=2}^{r}\mathcal {M}(m_{t},t-1)\right) , \end{aligned}$$其中 \(\mathcal {M}(m,r):=frac{m}{textrm{gcd}\big (m,\textrm{lcm}(1,\ldots ,r)\big )}\).我们的结果回答了弗尔索姆、霍马、柳和唐提出的一个猜想,也是安德鲁斯、古普塔、罗塞斯和塞勒斯发现的 mary 分区的同余关系的一般化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High order congruences for M-ary partitions

For a sequence \(M=(m_{i})_{i=0}^{\infty }\) of integers such that \(m_{0}=1\), \(m_{i}\ge 2\) for \(i\ge 1\), let \(p_{M}(n)\) denote the number of partitions of n into parts of the form \(m_{0}m_{1}\cdots m_{r}\). In this paper we show that for every positive integer n the following congruence is true:

$$\begin{aligned} p_{M}(m_{1}m_{2}\cdots m_{r}n-1)\equiv 0\ \ \left( \textrm{mod}\ \prod _{t=2}^{r}\mathcal {M}(m_{t},t-1)\right) , \end{aligned}$$

where \(\mathcal {M}(m,r):=\frac{m}{\textrm{gcd}\big (m,\textrm{lcm}(1,\ldots ,r)\big )}\). Our result answers a conjecture posed by Folsom, Homma, Ryu and Tong, and is a generalisation of the congruence relations for m-ary partitions found by Andrews, Gupta, and Rødseth and Sellers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica. Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信