{"title":"论与帕斯卡三角形有关的矩阵行列式","authors":"Martín Mereb","doi":"10.1007/s10998-024-00581-6","DOIUrl":null,"url":null,"abstract":"<p>We prove that the symmetric Pascal triangle matrix modulo 2 has the property that each of the square sub-matrices positioned at the upper border or on the left border has determinant, computed in <span>\\({\\mathbb {Z}}\\)</span>, equal to 1 or <span>\\(-1\\)</span>. Furthermore, we give the exact number of Pascal-like <span>\\(n \\times m\\)</span> matrices over a commutative ring with finite group of units.\n</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"31 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On determinants of matrices related to Pascal’s triangle\",\"authors\":\"Martín Mereb\",\"doi\":\"10.1007/s10998-024-00581-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the symmetric Pascal triangle matrix modulo 2 has the property that each of the square sub-matrices positioned at the upper border or on the left border has determinant, computed in <span>\\\\({\\\\mathbb {Z}}\\\\)</span>, equal to 1 or <span>\\\\(-1\\\\)</span>. Furthermore, we give the exact number of Pascal-like <span>\\\\(n \\\\times m\\\\)</span> matrices over a commutative ring with finite group of units.\\n</p>\",\"PeriodicalId\":49706,\"journal\":{\"name\":\"Periodica Mathematica Hungarica\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Mathematica Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00581-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00581-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On determinants of matrices related to Pascal’s triangle
We prove that the symmetric Pascal triangle matrix modulo 2 has the property that each of the square sub-matrices positioned at the upper border or on the left border has determinant, computed in \({\mathbb {Z}}\), equal to 1 or \(-1\). Furthermore, we give the exact number of Pascal-like \(n \times m\) matrices over a commutative ring with finite group of units.
期刊介绍:
Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica.
Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.