关于有特殊类型素数 II 的三元二叉不等式

Pub Date : 2024-07-02 DOI:10.1007/s10998-024-00602-4
Li Zhu
{"title":"关于有特殊类型素数 II 的三元二叉不等式","authors":"Li Zhu","doi":"10.1007/s10998-024-00602-4","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <i>N</i> is a sufficiently large real number and <i>E</i> is an arbitrarily large constant. In this paper, it is proved that, for <span>\\(1&lt; c &lt; \\frac{7}{6}\\)</span>, the Diophantine inequality </p><span>$$\\begin{aligned} |p_1^c+p_2^c+p_3^c-N|&lt;(\\log N)^{-E} \\end{aligned}$$</span><p>is solvable in prime variables <span>\\(p_1,p_2,p_3\\)</span> so that each of the numbers <span>\\(p_i+2,\\,i=1,2,3\\)</span>, has at most <span>\\(\\big [3.43655+{\\frac{12.12}{7-6c}}\\big ]\\)</span> prime factors counted with multiplicity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a ternary diophantine inequality with prime numbers of a special type II\",\"authors\":\"Li Zhu\",\"doi\":\"10.1007/s10998-024-00602-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that <i>N</i> is a sufficiently large real number and <i>E</i> is an arbitrarily large constant. In this paper, it is proved that, for <span>\\\\(1&lt; c &lt; \\\\frac{7}{6}\\\\)</span>, the Diophantine inequality </p><span>$$\\\\begin{aligned} |p_1^c+p_2^c+p_3^c-N|&lt;(\\\\log N)^{-E} \\\\end{aligned}$$</span><p>is solvable in prime variables <span>\\\\(p_1,p_2,p_3\\\\)</span> so that each of the numbers <span>\\\\(p_i+2,\\\\,i=1,2,3\\\\)</span>, has at most <span>\\\\(\\\\big [3.43655+{\\\\frac{12.12}{7-6c}}\\\\big ]\\\\)</span> prime factors counted with multiplicity.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10998-024-00602-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00602-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设 N 是一个足够大的实数,E 是一个任意大的常数。本文证明,对于 \(1< c < \frac{7}{6}\), Diophantine 不等式 $$\begin{aligned}.|p_1^c+p_2^c+p_3^c-N|<(\log N)^{-E}\end{aligned}$$在素数变量 \(p_1,p_2,p_3\)中是可解的,因此每个数 \(p_i+2,\,i=1,2,3\),最多有\(\big [3.43655+{frac{12.12}{7-6c}}\big ]\)以倍数计算的素因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a ternary diophantine inequality with prime numbers of a special type II

Suppose that N is a sufficiently large real number and E is an arbitrarily large constant. In this paper, it is proved that, for \(1< c < \frac{7}{6}\), the Diophantine inequality

$$\begin{aligned} |p_1^c+p_2^c+p_3^c-N|<(\log N)^{-E} \end{aligned}$$

is solvable in prime variables \(p_1,p_2,p_3\) so that each of the numbers \(p_i+2,\,i=1,2,3\), has at most \(\big [3.43655+{\frac{12.12}{7-6c}}\big ]\) prime factors counted with multiplicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信