Hung-Ching Chang, Yusi Fang, Michael T. Gorczyca, Kayhan Batmanghelich, George C. Tseng
{"title":"部分和统计和样本分割策略的高维因果中介分析在影像遗传学中的应用","authors":"Hung-Ching Chang, Yusi Fang, Michael T. Gorczyca, Kayhan Batmanghelich, George C. Tseng","doi":"10.1101/2024.06.23.24309362","DOIUrl":null,"url":null,"abstract":"Causal mediation analysis provides a systematic approach to explore the causal role of one or more mediators in the association between exposure and outcome. In omics or imaging data analysis, mediators are often high-dimensional, which brings new statistical challenges. Existing methods either violate causal assumptions or fail in interpretable variable selection. Additionally, mediators are often highly correlated, presenting difficulties in selecting and prioritizing top mediators. To address these issues, we develop a framework using Partial Sum Statistic and Sample Splitting Strategy, namely PS5, for high-dimensional causal mediation analysis. The method provides a powerful global mediation test satisfying causal assumptions, followed by an algorithm to select and prioritize active mediators with quantification of individual mediation contributions. We demonstrate its accurate type I error control, superior statistical power, reduced bias in mediation effect estimation, and accurate mediator selection using extensive simulations of varying levels of effect size, signal sparsity, and mediator correlations. Finally, we apply PS5 to an imaging genetics dataset of chronic obstructive pulmonary disease (COPD) patients (<em>N</em>=8,897) in the COPDGene study to examine the causal mediation role of lung images (<em>p</em>=5,810) in the associations between polygenic risk score and lung function and between smoking exposure and lung function, respectively. Both causal mediation analyses successfully estimate the global indirect effect and detect mediating image regions. Collectively, we find a region in the lower lobe of the right lung with a strong and concordant mediation effect for both genetic and environmental exposures. This suggests that targeted treatment toward this region might mitigate the severity of COPD due to genetic and smoking effects.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-dimensional causal mediation analysis by partial sum statistic and sample splitting strategy in imaging genetics application\",\"authors\":\"Hung-Ching Chang, Yusi Fang, Michael T. Gorczyca, Kayhan Batmanghelich, George C. Tseng\",\"doi\":\"10.1101/2024.06.23.24309362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Causal mediation analysis provides a systematic approach to explore the causal role of one or more mediators in the association between exposure and outcome. In omics or imaging data analysis, mediators are often high-dimensional, which brings new statistical challenges. Existing methods either violate causal assumptions or fail in interpretable variable selection. Additionally, mediators are often highly correlated, presenting difficulties in selecting and prioritizing top mediators. To address these issues, we develop a framework using Partial Sum Statistic and Sample Splitting Strategy, namely PS5, for high-dimensional causal mediation analysis. The method provides a powerful global mediation test satisfying causal assumptions, followed by an algorithm to select and prioritize active mediators with quantification of individual mediation contributions. We demonstrate its accurate type I error control, superior statistical power, reduced bias in mediation effect estimation, and accurate mediator selection using extensive simulations of varying levels of effect size, signal sparsity, and mediator correlations. Finally, we apply PS5 to an imaging genetics dataset of chronic obstructive pulmonary disease (COPD) patients (<em>N</em>=8,897) in the COPDGene study to examine the causal mediation role of lung images (<em>p</em>=5,810) in the associations between polygenic risk score and lung function and between smoking exposure and lung function, respectively. Both causal mediation analyses successfully estimate the global indirect effect and detect mediating image regions. Collectively, we find a region in the lower lobe of the right lung with a strong and concordant mediation effect for both genetic and environmental exposures. This suggests that targeted treatment toward this region might mitigate the severity of COPD due to genetic and smoking effects.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.06.23.24309362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.06.23.24309362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
因果中介分析提供了一种系统方法,用于探索一个或多个中介因素在暴露与结果之间的关联中的因果作用。在omics或成像数据分析中,中介因子通常是高维的,这给统计带来了新的挑战。现有的方法要么违反因果假设,要么在可解释的变量选择上失败。此外,中介因子往往高度相关,这给选择和优先考虑顶级中介因子带来了困难。为了解决这些问题,我们开发了一种使用偏和统计和样本分割策略(即 PS5)进行高维因果中介分析的框架。该方法提供了一个满足因果假设的强大的全局中介检验,随后提供了一种算法来选择和优先考虑活跃的中介,并量化单个中介的贡献。我们通过对不同水平的效应大小、信号稀疏性和中介相关性进行大量模拟,证明了该方法具有准确的 I 类误差控制、出色的统计能力、降低中介效应估计偏差以及准确的中介选择。最后,我们将 PS5 应用于 COPDGene 研究中慢性阻塞性肺病(COPD)患者(N=8897)的影像遗传学数据集,分别研究了肺部影像(p=5810)在多基因风险评分与肺功能之间以及吸烟暴露与肺功能之间的因果中介作用。这两项因果中介分析都成功地估算出了整体间接效应,并发现了中介图像区域。总之,我们发现右肺下叶的一个区域对遗传和环境暴露具有强烈且一致的中介效应。这表明,针对该区域的针对性治疗可能会减轻慢性阻塞性肺病因遗传和吸烟影响而导致的严重程度。
High-dimensional causal mediation analysis by partial sum statistic and sample splitting strategy in imaging genetics application
Causal mediation analysis provides a systematic approach to explore the causal role of one or more mediators in the association between exposure and outcome. In omics or imaging data analysis, mediators are often high-dimensional, which brings new statistical challenges. Existing methods either violate causal assumptions or fail in interpretable variable selection. Additionally, mediators are often highly correlated, presenting difficulties in selecting and prioritizing top mediators. To address these issues, we develop a framework using Partial Sum Statistic and Sample Splitting Strategy, namely PS5, for high-dimensional causal mediation analysis. The method provides a powerful global mediation test satisfying causal assumptions, followed by an algorithm to select and prioritize active mediators with quantification of individual mediation contributions. We demonstrate its accurate type I error control, superior statistical power, reduced bias in mediation effect estimation, and accurate mediator selection using extensive simulations of varying levels of effect size, signal sparsity, and mediator correlations. Finally, we apply PS5 to an imaging genetics dataset of chronic obstructive pulmonary disease (COPD) patients (N=8,897) in the COPDGene study to examine the causal mediation role of lung images (p=5,810) in the associations between polygenic risk score and lung function and between smoking exposure and lung function, respectively. Both causal mediation analyses successfully estimate the global indirect effect and detect mediating image regions. Collectively, we find a region in the lower lobe of the right lung with a strong and concordant mediation effect for both genetic and environmental exposures. This suggests that targeted treatment toward this region might mitigate the severity of COPD due to genetic and smoking effects.