Michał G. Ciszewski, Jakob Söhl, Ton Leenen, Bart van Trigt, Geurt Jongbloed
{"title":"回归问题中的无效应检验:置换法","authors":"Michał G. Ciszewski, Jakob Söhl, Ton Leenen, Bart van Trigt, Geurt Jongbloed","doi":"10.1111/stan.12346","DOIUrl":null,"url":null,"abstract":"Often the question arises whether can be predicted based on using a certain model. Especially for highly flexible models such as neural networks one may ask whether a seemingly good prediction is actually better than fitting pure noise or whether it has to be attributed to the flexibility of the model. This paper proposes a rigorous permutation test to assess whether the prediction is better than the prediction of pure noise. The test avoids any sample splitting and is based instead on generating new pairings of . It introduces a new formulation of the null hypothesis and rigorous justification for the test, which distinguishes it from the previous literature. The theoretical findings are applied both to simulated data and to sensor data of tennis serves in an experimental context. The simulation study underscores how the available information affects the test. It shows that the less informative the predictors, the lower the probability of rejecting the null hypothesis of fitting pure noise and emphasizes that detecting weaker dependence between variables requires a sufficient sample size.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"20 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing for no effect in regression problems: A permutation approach\",\"authors\":\"Michał G. Ciszewski, Jakob Söhl, Ton Leenen, Bart van Trigt, Geurt Jongbloed\",\"doi\":\"10.1111/stan.12346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Often the question arises whether can be predicted based on using a certain model. Especially for highly flexible models such as neural networks one may ask whether a seemingly good prediction is actually better than fitting pure noise or whether it has to be attributed to the flexibility of the model. This paper proposes a rigorous permutation test to assess whether the prediction is better than the prediction of pure noise. The test avoids any sample splitting and is based instead on generating new pairings of . It introduces a new formulation of the null hypothesis and rigorous justification for the test, which distinguishes it from the previous literature. The theoretical findings are applied both to simulated data and to sensor data of tennis serves in an experimental context. The simulation study underscores how the available information affects the test. It shows that the less informative the predictors, the lower the probability of rejecting the null hypothesis of fitting pure noise and emphasizes that detecting weaker dependence between variables requires a sufficient sample size.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12346\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12346","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Testing for no effect in regression problems: A permutation approach
Often the question arises whether can be predicted based on using a certain model. Especially for highly flexible models such as neural networks one may ask whether a seemingly good prediction is actually better than fitting pure noise or whether it has to be attributed to the flexibility of the model. This paper proposes a rigorous permutation test to assess whether the prediction is better than the prediction of pure noise. The test avoids any sample splitting and is based instead on generating new pairings of . It introduces a new formulation of the null hypothesis and rigorous justification for the test, which distinguishes it from the previous literature. The theoretical findings are applied both to simulated data and to sensor data of tennis serves in an experimental context. The simulation study underscores how the available information affects the test. It shows that the less informative the predictors, the lower the probability of rejecting the null hypothesis of fitting pure noise and emphasizes that detecting weaker dependence between variables requires a sufficient sample size.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.