P. Sudhakar Reddy, B. S. Raghavendra, A. V. Narasimhadhan
{"title":"基于近似有限创新率的地震反射率估算","authors":"P. Sudhakar Reddy, B. S. Raghavendra, A. V. Narasimhadhan","doi":"10.1007/s00034-024-02749-4","DOIUrl":null,"url":null,"abstract":"<p>Reflectivity inversion is an important deconvolution problem in reflection seismology that helps to describe the subsurface structure. Generally, deconvolution techniques iteratively work on the seismic data for estimating reflectivity. Therefore, these techniques are computationally expensive and may be slow to converge. In this paper, a novel method for estimating reflectivity signals in seismic data using an approximate finite rate of innovation (FRI) framework, is proposed. The seismic data is modeled as a convolution between the Ricker wavelet and the FRI signal, a Dirac impulse train. Relaxing the accurate exponential reproduction limitation given by generalised Strang-Fix (GSF) conditions, we develop a suitable sampling kernel utilizing Ricker wavelet which allows us to estimate the reflectivity signal. The experimental results demonstrate that the proposed approximate FRI framework provides a better reflectivity estimation than the deconvolution technique for medium-to-high signal-to-noise ratio (SNR) regimes with nearly 18% of seismic data.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Finite Rate of Innovation Based Seismic Reflectivity Estimation\",\"authors\":\"P. Sudhakar Reddy, B. S. Raghavendra, A. V. Narasimhadhan\",\"doi\":\"10.1007/s00034-024-02749-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reflectivity inversion is an important deconvolution problem in reflection seismology that helps to describe the subsurface structure. Generally, deconvolution techniques iteratively work on the seismic data for estimating reflectivity. Therefore, these techniques are computationally expensive and may be slow to converge. In this paper, a novel method for estimating reflectivity signals in seismic data using an approximate finite rate of innovation (FRI) framework, is proposed. The seismic data is modeled as a convolution between the Ricker wavelet and the FRI signal, a Dirac impulse train. Relaxing the accurate exponential reproduction limitation given by generalised Strang-Fix (GSF) conditions, we develop a suitable sampling kernel utilizing Ricker wavelet which allows us to estimate the reflectivity signal. The experimental results demonstrate that the proposed approximate FRI framework provides a better reflectivity estimation than the deconvolution technique for medium-to-high signal-to-noise ratio (SNR) regimes with nearly 18% of seismic data.</p>\",\"PeriodicalId\":10227,\"journal\":{\"name\":\"Circuits, Systems and Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00034-024-02749-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02749-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Approximate Finite Rate of Innovation Based Seismic Reflectivity Estimation
Reflectivity inversion is an important deconvolution problem in reflection seismology that helps to describe the subsurface structure. Generally, deconvolution techniques iteratively work on the seismic data for estimating reflectivity. Therefore, these techniques are computationally expensive and may be slow to converge. In this paper, a novel method for estimating reflectivity signals in seismic data using an approximate finite rate of innovation (FRI) framework, is proposed. The seismic data is modeled as a convolution between the Ricker wavelet and the FRI signal, a Dirac impulse train. Relaxing the accurate exponential reproduction limitation given by generalised Strang-Fix (GSF) conditions, we develop a suitable sampling kernel utilizing Ricker wavelet which allows us to estimate the reflectivity signal. The experimental results demonstrate that the proposed approximate FRI framework provides a better reflectivity estimation than the deconvolution technique for medium-to-high signal-to-noise ratio (SNR) regimes with nearly 18% of seismic data.
期刊介绍:
Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area.
The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing.
The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published.
Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.