{"title":"SPEI-FL:智能医疗系统中的无服务器隐私边缘智能联合学习","authors":"Mahmuda Akter, Nour Moustafa, Benjamin Turnbull","doi":"10.1007/s12559-024-10310-3","DOIUrl":null,"url":null,"abstract":"<p>Smart healthcare systems promise significant benefits for fast and accurate medical decisions. However, working with personal health data presents new privacy issues and constraints that must be solved from a cybersecurity perspective. Edge intelligence-enabled federated learning is a new scheme that utilises decentralised computing that allows data analytics to be carried out at the edge of a network, enhancing data privacy. However, this scheme suffers from privacy attacks, including inference, free-riding, and man-in-the-middle attacks, especially with serverless computing for allocating resources to user needs. Edge intelligence-enabled federated learning requires client data insertion and deletion to authenticate genuine clients and a serverless computing capability to ensure the security of collaborative machine learning models. This work introduces a serverless privacy edge intelligence-based federated learning (SPEI-FL) framework to address these issues. SPEI-FL includes a federated edge aggregator and authentication method to improve the data privacy of federated learning and allow client adaptation and removal without impacting the overall learning processes. It also can classify intruders through serverless computing processes. The proposed framework was evaluated with the unstructured COVID-19 medical chest x-rays and MNIST digit datasets, and the structured BoT-IoT dataset. The performance of the framework is comparable with existing authentication methods and reported a higher accuracy than comparable methods (approximately 90% as compared with the 81% reported by peer methods). The proposed authentication method prevents the exposure of sensitive patient information during medical device authentication and would become the cornerstone of the next generation of medical security with serverless computing.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPEI-FL: Serverless Privacy Edge Intelligence-Enabled Federated Learning in Smart Healthcare Systems\",\"authors\":\"Mahmuda Akter, Nour Moustafa, Benjamin Turnbull\",\"doi\":\"10.1007/s12559-024-10310-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Smart healthcare systems promise significant benefits for fast and accurate medical decisions. However, working with personal health data presents new privacy issues and constraints that must be solved from a cybersecurity perspective. Edge intelligence-enabled federated learning is a new scheme that utilises decentralised computing that allows data analytics to be carried out at the edge of a network, enhancing data privacy. However, this scheme suffers from privacy attacks, including inference, free-riding, and man-in-the-middle attacks, especially with serverless computing for allocating resources to user needs. Edge intelligence-enabled federated learning requires client data insertion and deletion to authenticate genuine clients and a serverless computing capability to ensure the security of collaborative machine learning models. This work introduces a serverless privacy edge intelligence-based federated learning (SPEI-FL) framework to address these issues. SPEI-FL includes a federated edge aggregator and authentication method to improve the data privacy of federated learning and allow client adaptation and removal without impacting the overall learning processes. It also can classify intruders through serverless computing processes. The proposed framework was evaluated with the unstructured COVID-19 medical chest x-rays and MNIST digit datasets, and the structured BoT-IoT dataset. The performance of the framework is comparable with existing authentication methods and reported a higher accuracy than comparable methods (approximately 90% as compared with the 81% reported by peer methods). The proposed authentication method prevents the exposure of sensitive patient information during medical device authentication and would become the cornerstone of the next generation of medical security with serverless computing.</p>\",\"PeriodicalId\":51243,\"journal\":{\"name\":\"Cognitive Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12559-024-10310-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10310-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
SPEI-FL: Serverless Privacy Edge Intelligence-Enabled Federated Learning in Smart Healthcare Systems
Smart healthcare systems promise significant benefits for fast and accurate medical decisions. However, working with personal health data presents new privacy issues and constraints that must be solved from a cybersecurity perspective. Edge intelligence-enabled federated learning is a new scheme that utilises decentralised computing that allows data analytics to be carried out at the edge of a network, enhancing data privacy. However, this scheme suffers from privacy attacks, including inference, free-riding, and man-in-the-middle attacks, especially with serverless computing for allocating resources to user needs. Edge intelligence-enabled federated learning requires client data insertion and deletion to authenticate genuine clients and a serverless computing capability to ensure the security of collaborative machine learning models. This work introduces a serverless privacy edge intelligence-based federated learning (SPEI-FL) framework to address these issues. SPEI-FL includes a federated edge aggregator and authentication method to improve the data privacy of federated learning and allow client adaptation and removal without impacting the overall learning processes. It also can classify intruders through serverless computing processes. The proposed framework was evaluated with the unstructured COVID-19 medical chest x-rays and MNIST digit datasets, and the structured BoT-IoT dataset. The performance of the framework is comparable with existing authentication methods and reported a higher accuracy than comparable methods (approximately 90% as compared with the 81% reported by peer methods). The proposed authentication method prevents the exposure of sensitive patient information during medical device authentication and would become the cornerstone of the next generation of medical security with serverless computing.
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.