导电室形状对镜面陷波器中刚性气球模式稳定性的影响

IF 2.1 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Qiusun Zeng, Igor Kotelnikov
{"title":"导电室形状对镜面陷波器中刚性气球模式稳定性的影响","authors":"Qiusun Zeng, Igor Kotelnikov","doi":"10.1088/1361-6587/ad4f10","DOIUrl":null,"url":null,"abstract":"MHD stabilization of flute and ballooning modes in an axisymmetric mirror trap is studied under the assumption of strong finite Larmor radius effect that suppresses all perturbations with azimuthal numbers <inline-formula>\n<tex-math><?CDATA $m\\unicode{x2A7E}2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>m</mml:mi><mml:mtext>⩾</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad4f10ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and makes the <italic toggle=\"yes\">m</italic> = 1 mode ‘rigid’. The rigid mode can be effectively suppressed using perfectly conducting lateral wall without any additional means of stabilization or in combination with end MHD anchors. Numerical calculations were carried out for an anisotropic plasma produced in the course of neutral beam injection into the minimum of the magnetic field at the right angle to the trap axis. The stabilizing effect of the conducting shell made of a straightened cylinder is compared with a proportional chamber, which, on an enlarged scale, repeats the shape of the plasma column. It is confirmed that for convincing wall stabilization of the rigid modes, the plasma beta (<italic toggle=\"yes\">β</italic>, the ratio of the plasma pressure to the magnetic field pressure) must exceed some critical value <inline-formula>\n<tex-math><?CDATA $\\beta_{\\text{cr}2}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad4f10ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. When conducting lateral wall is combined with conducting end plates imitating MHD end anchors, there are two critical betas and, respectively, two stability zones <inline-formula>\n<tex-math><?CDATA $\\beta \\lt \\beta_{\\text{cr}1}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>β</mml:mi><mml:mo>&lt;</mml:mo><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad4f10ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math><?CDATA $\\beta \\gt \\beta_{\\text{cr}2}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>β</mml:mi><mml:mo>&gt;</mml:mo><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad4f10ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> that can merge, making the entire range <inline-formula>\n<tex-math><?CDATA $0 \\lt \\beta \\lt 1$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mn>0</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>β</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"ppcfad4f10ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> of betas allowable for stable plasma confinement. The dependence of the critical betas on the plasma anisotropy, mirror ratio, width of the vacuum gap between the plasma column and the lateral wall, radial pressure profile and the axial magnetic field profile is examined.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"52 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the shape of a conducting chamber on the stability of rigid ballooning modes in a mirror trap\",\"authors\":\"Qiusun Zeng, Igor Kotelnikov\",\"doi\":\"10.1088/1361-6587/ad4f10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MHD stabilization of flute and ballooning modes in an axisymmetric mirror trap is studied under the assumption of strong finite Larmor radius effect that suppresses all perturbations with azimuthal numbers <inline-formula>\\n<tex-math><?CDATA $m\\\\unicode{x2A7E}2$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>m</mml:mi><mml:mtext>⩾</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad4f10ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and makes the <italic toggle=\\\"yes\\\">m</italic> = 1 mode ‘rigid’. The rigid mode can be effectively suppressed using perfectly conducting lateral wall without any additional means of stabilization or in combination with end MHD anchors. Numerical calculations were carried out for an anisotropic plasma produced in the course of neutral beam injection into the minimum of the magnetic field at the right angle to the trap axis. The stabilizing effect of the conducting shell made of a straightened cylinder is compared with a proportional chamber, which, on an enlarged scale, repeats the shape of the plasma column. It is confirmed that for convincing wall stabilization of the rigid modes, the plasma beta (<italic toggle=\\\"yes\\\">β</italic>, the ratio of the plasma pressure to the magnetic field pressure) must exceed some critical value <inline-formula>\\n<tex-math><?CDATA $\\\\beta_{\\\\text{cr}2}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad4f10ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. When conducting lateral wall is combined with conducting end plates imitating MHD end anchors, there are two critical betas and, respectively, two stability zones <inline-formula>\\n<tex-math><?CDATA $\\\\beta \\\\lt \\\\beta_{\\\\text{cr}1}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>β</mml:mi><mml:mo>&lt;</mml:mo><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad4f10ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and <inline-formula>\\n<tex-math><?CDATA $\\\\beta \\\\gt \\\\beta_{\\\\text{cr}2}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>β</mml:mi><mml:mo>&gt;</mml:mo><mml:msub><mml:mi>β</mml:mi><mml:mrow><mml:mtext>cr</mml:mtext><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad4f10ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> that can merge, making the entire range <inline-formula>\\n<tex-math><?CDATA $0 \\\\lt \\\\beta \\\\lt 1$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>0</mml:mn><mml:mo>&lt;</mml:mo><mml:mi>β</mml:mi><mml:mo>&lt;</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"ppcfad4f10ieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> of betas allowable for stable plasma confinement. The dependence of the critical betas on the plasma anisotropy, mirror ratio, width of the vacuum gap between the plasma column and the lateral wall, radial pressure profile and the axial magnetic field profile is examined.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad4f10\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad4f10","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

在强有限拉莫尔半径效应的假设下,研究了轴对称镜像陷波器中笛音和气球模式的 MHD 稳定问题,该效应抑制了方位角数 m⩾2 的所有扰动,并使 m = 1 模式成为 "刚性 "模式。使用完全导电的侧壁可以有效抑制刚性模式,而无需任何额外的稳定手段,或与末端 MHD 锚点相结合。我们对中性束注入与阱轴成直角的最小磁场过程中产生的各向异性等离子体进行了数值计算。将由拉直圆柱体制成的导电外壳的稳定效果与比例室进行了比较,后者在放大后重复了等离子体柱的形状。结果表明,要使壁面稳定刚性模式,等离子体贝塔值(β,等离子体压力与磁场压力之比)必须超过某个临界值 βcr2。当导电侧壁与模仿 MHD 端锚的导电端板相结合时,会出现两个临界贝塔,并分别出现两个可以合并的稳定区 β<βcr1 和 β>βcr2,从而使整个 0<β<1 的贝塔范围都可以实现稳定的等离子体约束。研究了临界贝塔对等离子体各向异性、镜像比、等离子体柱与侧壁之间真空间隙的宽度、径向压力剖面和轴向磁场剖面的依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of the shape of a conducting chamber on the stability of rigid ballooning modes in a mirror trap
MHD stabilization of flute and ballooning modes in an axisymmetric mirror trap is studied under the assumption of strong finite Larmor radius effect that suppresses all perturbations with azimuthal numbers m2 and makes the m = 1 mode ‘rigid’. The rigid mode can be effectively suppressed using perfectly conducting lateral wall without any additional means of stabilization or in combination with end MHD anchors. Numerical calculations were carried out for an anisotropic plasma produced in the course of neutral beam injection into the minimum of the magnetic field at the right angle to the trap axis. The stabilizing effect of the conducting shell made of a straightened cylinder is compared with a proportional chamber, which, on an enlarged scale, repeats the shape of the plasma column. It is confirmed that for convincing wall stabilization of the rigid modes, the plasma beta (β, the ratio of the plasma pressure to the magnetic field pressure) must exceed some critical value βcr2 . When conducting lateral wall is combined with conducting end plates imitating MHD end anchors, there are two critical betas and, respectively, two stability zones β<βcr1 and β>βcr2 that can merge, making the entire range 0<β<1 of betas allowable for stable plasma confinement. The dependence of the critical betas on the plasma anisotropy, mirror ratio, width of the vacuum gap between the plasma column and the lateral wall, radial pressure profile and the axial magnetic field profile is examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Physics and Controlled Fusion
Plasma Physics and Controlled Fusion 物理-物理:核物理
CiteScore
4.50
自引率
13.60%
发文量
224
审稿时长
4.5 months
期刊介绍: Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods. Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信