有穷单子的一些性质

Pub Date : 2024-06-17 DOI:10.1007/s00233-024-10443-9
Hamid Kulosman, Alica Miller
{"title":"有穷单子的一些性质","authors":"Hamid Kulosman, Alica Miller","doi":"10.1007/s00233-024-10443-9","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of PC cancellative additive monoids with infinity and use it to characterize cancellative additive principal ideal domains with infinity. Our characterization improves various known characterizations from the literature, both, in the context of the commutative cancellative monoids, as well as in the context of the analogues of the statements from the commutative ring theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some properties of monoids with infinity\",\"authors\":\"Hamid Kulosman, Alica Miller\",\"doi\":\"10.1007/s00233-024-10443-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the notion of PC cancellative additive monoids with infinity and use it to characterize cancellative additive principal ideal domains with infinity. Our characterization improves various known characterizations from the literature, both, in the context of the commutative cancellative monoids, as well as in the context of the analogues of the statements from the commutative ring theory.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10443-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10443-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了具有无穷大的 PC 可取消加法单元的概念,并用它来描述具有无穷大的可取消加法主理想域。我们的表征改进了文献中的各种已知表征,既包括换元可消加性单元的表征,也包括换元环理论中的类似表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Some properties of monoids with infinity

分享
查看原文
Some properties of monoids with infinity

We introduce the notion of PC cancellative additive monoids with infinity and use it to characterize cancellative additive principal ideal domains with infinity. Our characterization improves various known characterizations from the literature, both, in the context of the commutative cancellative monoids, as well as in the context of the analogues of the statements from the commutative ring theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信