从广场一元体到低广场一元体

IF 0.7 3区 数学 Q2 MATHEMATICS
Ricardo P. Guilherme
{"title":"从广场一元体到低广场一元体","authors":"Ricardo P. Guilherme","doi":"10.1007/s00233-024-10436-8","DOIUrl":null,"url":null,"abstract":"<p>The plactic monoids can be obtained from the tensor product of crystals. Similarly, the hypoplactic monoids can be obtained from the quasi-tensor product of quasi-crystals. In this paper, we present a unified approach to these constructions by expressing them in the context of quasi-crystals. We provide a sufficient condition to obtain a quasi-crystal monoid for the quasi-tensor product from a quasi-crystal monoid for the tensor product. We also establish a sufficient condition for a hypoplactic monoid to be a quotient of the plactic monoid associated to the same seminormal quasi-crystal.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"75 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From plactic monoids to hypoplactic monoids\",\"authors\":\"Ricardo P. Guilherme\",\"doi\":\"10.1007/s00233-024-10436-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The plactic monoids can be obtained from the tensor product of crystals. Similarly, the hypoplactic monoids can be obtained from the quasi-tensor product of quasi-crystals. In this paper, we present a unified approach to these constructions by expressing them in the context of quasi-crystals. We provide a sufficient condition to obtain a quasi-crystal monoid for the quasi-tensor product from a quasi-crystal monoid for the tensor product. We also establish a sufficient condition for a hypoplactic monoid to be a quotient of the plactic monoid associated to the same seminormal quasi-crystal.</p>\",\"PeriodicalId\":49549,\"journal\":{\"name\":\"Semigroup Forum\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semigroup Forum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10436-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semigroup Forum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10436-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

可以从晶体的张量积中得到 plactic monoids。类似地,可以从准晶体的准张量积中得到下对称单体。在本文中,我们通过在准晶体的背景下表达这些构造,提出了一种统一的方法。我们提供了从张量积的准晶体单体得到准张量积的准晶体单体的充分条件。我们还建立了一个充分条件,使下褶单元成为与同一半正态准晶相关的褶单元的商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From plactic monoids to hypoplactic monoids

The plactic monoids can be obtained from the tensor product of crystals. Similarly, the hypoplactic monoids can be obtained from the quasi-tensor product of quasi-crystals. In this paper, we present a unified approach to these constructions by expressing them in the context of quasi-crystals. We provide a sufficient condition to obtain a quasi-crystal monoid for the quasi-tensor product from a quasi-crystal monoid for the tensor product. We also establish a sufficient condition for a hypoplactic monoid to be a quotient of the plactic monoid associated to the same seminormal quasi-crystal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semigroup Forum
Semigroup Forum 数学-数学
CiteScore
1.50
自引率
14.30%
发文量
79
审稿时长
12 months
期刊介绍: Semigroup Forum is a platform for speedy and efficient transmission of information on current research in semigroup theory. Scope: Algebraic semigroups, topological semigroups, partially ordered semigroups, semigroups of measures and harmonic analysis on semigroups, numerical semigroups, transformation semigroups, semigroups of operators, and applications of semigroup theory to other disciplines such as ring theory, category theory, automata, logic, etc. Languages: English (preferred), French, German, Russian. Survey Articles: Expository, such as a symposium lecture. Of any length. May include original work, but should present the nonspecialist with a reasonably elementary and self-contained account of the fundamental parts of the subject. Research Articles: Will be subject to the usual refereeing procedure. Research Announcements: Description, limited to eight pages, of new results, mostly without proofs, of full length papers appearing elsewhere. The announcement must be accompanied by a copy of the unabridged version. Short Notes: (Maximum 4 pages) Worthy of the readers'' attention, such as new proofs, significant generalizations of known facts, comments on unsolved problems, historical remarks, etc. Research Problems: Unsolved research problems. Announcements: Of conferences, seminars, and symposia on Semigroup Theory. Abstracts and Bibliographical Items: Abstracts in English, limited to one page, of completed work are solicited. Listings of books, papers, and lecture notes previously published elsewhere and, above all, of new papers for which preprints are available are solicited from all authors. Abstracts for Reviewing Journals: Authors are invited to provide with their manuscript informally a one-page abstract of their contribution with key words and phrases and with subject matter classification. This material will be forwarded to Zentralblatt für Mathematik.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信