具有非线性局部阻尼和温策尔边界条件的耦合热弹性系统的稳定性

Pub Date : 2024-06-18 DOI:10.1007/s00233-024-10445-7
André Vicente
{"title":"具有非线性局部阻尼和温策尔边界条件的耦合热弹性系统的稳定性","authors":"André Vicente","doi":"10.1007/s00233-024-10445-7","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerning with the study of stability involving a thermoelastic system with internal nonlinear localized damping. The main novelty of the paper is to introduce to the study of thermoelastic system the general Wentzell boundary conditions associated to the internal heat equation. This boundary condition takes into account that there is a boundary source of heat which depends on the heat flow along the boundary, the heat flux across the boundary, and the temperature at the boundary. The tools are the use of multipliers with the construction of appropriate perturbed energy functionals.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability for coupled thermoelastic systems with nonlinear localized damping and Wentzell boundary conditions\",\"authors\":\"André Vicente\",\"doi\":\"10.1007/s00233-024-10445-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerning with the study of stability involving a thermoelastic system with internal nonlinear localized damping. The main novelty of the paper is to introduce to the study of thermoelastic system the general Wentzell boundary conditions associated to the internal heat equation. This boundary condition takes into account that there is a boundary source of heat which depends on the heat flow along the boundary, the heat flux across the boundary, and the temperature at the boundary. The tools are the use of multipliers with the construction of appropriate perturbed energy functionals.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10445-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10445-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究具有内部非线性局部阻尼的热弹性系统的稳定性。本文的主要创新点是在热弹性系统的研究中引入了与内部热方程相关的一般温策尔边界条件。这种边界条件考虑到存在边界热源,而边界热源取决于沿边界的热流、跨边界的热通量和边界的温度。工具是使用乘法器和构建适当的扰动能量函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stability for coupled thermoelastic systems with nonlinear localized damping and Wentzell boundary conditions

This paper is concerning with the study of stability involving a thermoelastic system with internal nonlinear localized damping. The main novelty of the paper is to introduce to the study of thermoelastic system the general Wentzell boundary conditions associated to the internal heat equation. This boundary condition takes into account that there is a boundary source of heat which depends on the heat flow along the boundary, the heat flux across the boundary, and the temperature at the boundary. The tools are the use of multipliers with the construction of appropriate perturbed energy functionals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信