{"title":"$$(n-1)$$-普吕次谐函数的蒙日-安培方程的多复绿函数和形式类型 k-黑森方程","authors":"Shuimu Li","doi":"10.1007/s12220-024-01702-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce the pluricomplex Green function of the Monge–Ampère equation for <span>\\((n-1)\\)</span>-plurisubharmonic functions by solving the Dirichlet problem for the form type Monge–Ampère and Hessian equations on a punctured domain. We prove the pluricomplex Green function is <span>\\(C^{1,\\alpha }\\)</span> by constructing approximating solutions and establishing uniform a priori estimates for the gradient and the complex Hessian. The singular solutions turn out to be smooth for the <i>k</i>-Hessian equations for <span>\\((n-1)\\)</span>-<i>k</i>-admissible functions.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Pluricomplex Green Function of the Monge–Ampère Equation for $$(n-1)$$ -Plurisubharmonic Functions and Form Type k-Hessian Equations\",\"authors\":\"Shuimu Li\",\"doi\":\"10.1007/s12220-024-01702-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce the pluricomplex Green function of the Monge–Ampère equation for <span>\\\\((n-1)\\\\)</span>-plurisubharmonic functions by solving the Dirichlet problem for the form type Monge–Ampère and Hessian equations on a punctured domain. We prove the pluricomplex Green function is <span>\\\\(C^{1,\\\\alpha }\\\\)</span> by constructing approximating solutions and establishing uniform a priori estimates for the gradient and the complex Hessian. The singular solutions turn out to be smooth for the <i>k</i>-Hessian equations for <span>\\\\((n-1)\\\\)</span>-<i>k</i>-admissible functions.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01702-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01702-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Pluricomplex Green Function of the Monge–Ampère Equation for $$(n-1)$$ -Plurisubharmonic Functions and Form Type k-Hessian Equations
In this paper, we introduce the pluricomplex Green function of the Monge–Ampère equation for \((n-1)\)-plurisubharmonic functions by solving the Dirichlet problem for the form type Monge–Ampère and Hessian equations on a punctured domain. We prove the pluricomplex Green function is \(C^{1,\alpha }\) by constructing approximating solutions and establishing uniform a priori estimates for the gradient and the complex Hessian. The singular solutions turn out to be smooth for the k-Hessian equations for \((n-1)\)-k-admissible functions.