链域 Courant Sharp Neumann 特征值的统一上界

Thomas Beck, Yaiza Canzani, Jeremy L. Marzuola
{"title":"链域 Courant Sharp Neumann 特征值的统一上界","authors":"Thomas Beck, Yaiza Canzani, Jeremy L. Marzuola","doi":"10.1007/s12220-024-01710-w","DOIUrl":null,"url":null,"abstract":"<p>We obtain upper bounds on the number of nodal domains of Laplace eigenfunctions on chain domains with Neumann boundary conditions. The chain domains consist of a family of planar domains, with piecewise smooth boundary, that are joined by thin necks. Our work does not assume a lower bound on the width of the necks in the chain domain. As a consequence, we prove an upper bound on the eigenvalue of Courant sharp eigenfunctions that is independent of the widths of the necks.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform Upper Bounds on Courant Sharp Neumann Eigenvalues of Chain Domains\",\"authors\":\"Thomas Beck, Yaiza Canzani, Jeremy L. Marzuola\",\"doi\":\"10.1007/s12220-024-01710-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain upper bounds on the number of nodal domains of Laplace eigenfunctions on chain domains with Neumann boundary conditions. The chain domains consist of a family of planar domains, with piecewise smooth boundary, that are joined by thin necks. Our work does not assume a lower bound on the width of the necks in the chain domain. As a consequence, we prove an upper bound on the eigenvalue of Courant sharp eigenfunctions that is independent of the widths of the necks.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01710-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01710-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们获得了具有诺伊曼边界条件的链域上拉普拉斯特征函数节点域数量的上限。链域由一系列具有片状光滑边界的平面域组成,这些平面域由细颈连接。我们的研究没有假设链域中颈部宽度的下限。因此,我们证明了库朗尖锐特征函数特征值的上界,它与颈部宽度无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uniform Upper Bounds on Courant Sharp Neumann Eigenvalues of Chain Domains

Uniform Upper Bounds on Courant Sharp Neumann Eigenvalues of Chain Domains

We obtain upper bounds on the number of nodal domains of Laplace eigenfunctions on chain domains with Neumann boundary conditions. The chain domains consist of a family of planar domains, with piecewise smooth boundary, that are joined by thin necks. Our work does not assume a lower bound on the width of the necks in the chain domain. As a consequence, we prove an upper bound on the eigenvalue of Courant sharp eigenfunctions that is independent of the widths of the necks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信