具有无限多裂缝的一些 Loewner 链的几何描述

Eleftherios K. Theodosiadis, Konstantinos Zarvalis
{"title":"具有无限多裂缝的一些 Loewner 链的几何描述","authors":"Eleftherios K. Theodosiadis, Konstantinos Zarvalis","doi":"10.1007/s12220-024-01718-2","DOIUrl":null,"url":null,"abstract":"<p>We study the chordal Loewner equation associated with certain driving functions that produce infinitely many slits. Specifically, for a choice of a sequence of positive numbers <span>\\((b_n)_{n\\ge 1}\\)</span> and points of the real line <span>\\((k_n)_{n\\ge 1}\\)</span>, we explicitily solve the Loewner PDE </p><span>$$\\begin{aligned} \\dfrac{\\partial f}{\\partial t}(z,t)=-f'(z,t)\\sum _{n=1}^{+\\infty }\\dfrac{2b_n}{z-k_n\\sqrt{1-t}} \\end{aligned}$$</span><p>in <span>\\(\\mathbb {H}\\times [0,1)\\)</span>. Using techniques involving the harmonic measure, we analyze the geometric behaviour of its solutions, as <span>\\(t\\rightarrow 1^-\\)</span>.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Description of Some Loewner Chains with Infinitely Many Slits\",\"authors\":\"Eleftherios K. Theodosiadis, Konstantinos Zarvalis\",\"doi\":\"10.1007/s12220-024-01718-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the chordal Loewner equation associated with certain driving functions that produce infinitely many slits. Specifically, for a choice of a sequence of positive numbers <span>\\\\((b_n)_{n\\\\ge 1}\\\\)</span> and points of the real line <span>\\\\((k_n)_{n\\\\ge 1}\\\\)</span>, we explicitily solve the Loewner PDE </p><span>$$\\\\begin{aligned} \\\\dfrac{\\\\partial f}{\\\\partial t}(z,t)=-f'(z,t)\\\\sum _{n=1}^{+\\\\infty }\\\\dfrac{2b_n}{z-k_n\\\\sqrt{1-t}} \\\\end{aligned}$$</span><p>in <span>\\\\(\\\\mathbb {H}\\\\times [0,1)\\\\)</span>. Using techniques involving the harmonic measure, we analyze the geometric behaviour of its solutions, as <span>\\\\(t\\\\rightarrow 1^-\\\\)</span>.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01718-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01718-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了与某些产生无限多狭缝的驱动函数相关的弦洛夫纳方程。具体来说,对于一个正数序列((b_n)_{n\ge 1})和实线点((k_n)_{n\ge 1})的选择,我们显式地求解了 Loewner PDE $$(开始{aligned})。\dfrac{partial f}{partial t}(z,t)=-f'(z,t)\sum _{n=1}^{+\infty }\dfrac{2b_n}{z-k_n\sqrt{1-t}}\end{aligned}$$in \(\mathbb {H}\times [0,1)\).利用涉及谐波测量的技术,我们分析了其解的几何行为,如 (t\rightarrow 1^-\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geometric Description of Some Loewner Chains with Infinitely Many Slits

Geometric Description of Some Loewner Chains with Infinitely Many Slits

We study the chordal Loewner equation associated with certain driving functions that produce infinitely many slits. Specifically, for a choice of a sequence of positive numbers \((b_n)_{n\ge 1}\) and points of the real line \((k_n)_{n\ge 1}\), we explicitily solve the Loewner PDE

$$\begin{aligned} \dfrac{\partial f}{\partial t}(z,t)=-f'(z,t)\sum _{n=1}^{+\infty }\dfrac{2b_n}{z-k_n\sqrt{1-t}} \end{aligned}$$

in \(\mathbb {H}\times [0,1)\). Using techniques involving the harmonic measure, we analyze the geometric behaviour of its solutions, as \(t\rightarrow 1^-\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信