{"title":"111 MHz 波段 PSR B1133+16 射电发射中星际闪烁图案的精细频率结构","authors":"M. V. Popov, T. V. Smirnova","doi":"10.1134/S1063772924700173","DOIUrl":null,"url":null,"abstract":"<p>The B1133+16 pulsar was observed at a frequency of 111 MHz with the BSA radio telescope of the Pushchino Radio Astronomy Observatory from October 2022 to March 2023. Observations were conducted twice a week for two consecutive days. In total, 38 measurements of the scintillation parameters were carried out with a high frequency resolution (up to 65 Hz). We used continuous signal recording in the frequency band of 2.5 MHz. The signal was reconstructed using the coherent dedispersion method. The pulsar’s dynamic spectra (DSP) were analyzed using the two-dimensional autocorrelation function (2DACF). The fine frequency structure of the pulsar’s scintillation was investigated both through the analysis of time and frequency sections of 2DACF from DSP and through the spectra of individual pulses. The analysis of the frequency sections of the 2DACF showed that the true form of diffractive frequency distortions can be represented by a generalized exponential function with a characteristic frequency width of 1.2 kHz and an index of 0.57. Comparison of scintillation parameters separately for two components of the average profile showed that they are identical for both components.</p>","PeriodicalId":55440,"journal":{"name":"Astronomy Reports","volume":"68 2","pages":"168 - 182"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine Frequency Structure of Interstellar Scintillation Pattern in Radio Emission of the PSR B1133+16 at 111 MHz\",\"authors\":\"M. V. Popov, T. V. Smirnova\",\"doi\":\"10.1134/S1063772924700173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The B1133+16 pulsar was observed at a frequency of 111 MHz with the BSA radio telescope of the Pushchino Radio Astronomy Observatory from October 2022 to March 2023. Observations were conducted twice a week for two consecutive days. In total, 38 measurements of the scintillation parameters were carried out with a high frequency resolution (up to 65 Hz). We used continuous signal recording in the frequency band of 2.5 MHz. The signal was reconstructed using the coherent dedispersion method. The pulsar’s dynamic spectra (DSP) were analyzed using the two-dimensional autocorrelation function (2DACF). The fine frequency structure of the pulsar’s scintillation was investigated both through the analysis of time and frequency sections of 2DACF from DSP and through the spectra of individual pulses. The analysis of the frequency sections of the 2DACF showed that the true form of diffractive frequency distortions can be represented by a generalized exponential function with a characteristic frequency width of 1.2 kHz and an index of 0.57. Comparison of scintillation parameters separately for two components of the average profile showed that they are identical for both components.</p>\",\"PeriodicalId\":55440,\"journal\":{\"name\":\"Astronomy Reports\",\"volume\":\"68 2\",\"pages\":\"168 - 182\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063772924700173\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063772924700173","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Fine Frequency Structure of Interstellar Scintillation Pattern in Radio Emission of the PSR B1133+16 at 111 MHz
The B1133+16 pulsar was observed at a frequency of 111 MHz with the BSA radio telescope of the Pushchino Radio Astronomy Observatory from October 2022 to March 2023. Observations were conducted twice a week for two consecutive days. In total, 38 measurements of the scintillation parameters were carried out with a high frequency resolution (up to 65 Hz). We used continuous signal recording in the frequency band of 2.5 MHz. The signal was reconstructed using the coherent dedispersion method. The pulsar’s dynamic spectra (DSP) were analyzed using the two-dimensional autocorrelation function (2DACF). The fine frequency structure of the pulsar’s scintillation was investigated both through the analysis of time and frequency sections of 2DACF from DSP and through the spectra of individual pulses. The analysis of the frequency sections of the 2DACF showed that the true form of diffractive frequency distortions can be represented by a generalized exponential function with a characteristic frequency width of 1.2 kHz and an index of 0.57. Comparison of scintillation parameters separately for two components of the average profile showed that they are identical for both components.
期刊介绍:
Astronomy Reports is an international peer reviewed journal that publishes original papers on astronomical topics, including theoretical and observational astrophysics, physics of the Sun, planetary astrophysics, radio astronomy, stellar astronomy, celestial mechanics, and astronomy methods and instrumentation.