通过有规律的踢腿增强游泳者的扩散:与尺度无关的参数空间的分析映射

IF 2.2 3区 物理与天体物理 Q2 MECHANICS
Arnau Jurado Romero, Carles Calero and Rossend Rey
{"title":"通过有规律的踢腿增强游泳者的扩散:与尺度无关的参数空间的分析映射","authors":"Arnau Jurado Romero, Carles Calero and Rossend Rey","doi":"10.1088/1742-5468/ad4024","DOIUrl":null,"url":null,"abstract":"Depending on their mechanism of self-propulsion, active particles can exhibit time-dependent, often periodic, propulsion velocity. The precise propulsion velocity profile determines their mean square displacement and their effective diffusion coefficient at long times. Here, we demonstrate that any periodic propulsion profile results in a larger diffusion coefficient than the corresponding case with constant propulsion velocity. We investigate, in detail, periodic exponentially decaying velocity pulses, expected in propulsion mechanisms based on sudden absorption of finite amounts of energy. We show, both analytically and with numerical simulations, that in these cases the effective diffusion coefficient can be arbitrarily enhanced with respect to the case with constant velocity equal to the average speed. Our results may help interpret, in a new light observations on the diffusion enhancement of active particles.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"74 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of swimmer diffusion through regular kicks: analytic mapping of a scale-independent parameter space\",\"authors\":\"Arnau Jurado Romero, Carles Calero and Rossend Rey\",\"doi\":\"10.1088/1742-5468/ad4024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depending on their mechanism of self-propulsion, active particles can exhibit time-dependent, often periodic, propulsion velocity. The precise propulsion velocity profile determines their mean square displacement and their effective diffusion coefficient at long times. Here, we demonstrate that any periodic propulsion profile results in a larger diffusion coefficient than the corresponding case with constant propulsion velocity. We investigate, in detail, periodic exponentially decaying velocity pulses, expected in propulsion mechanisms based on sudden absorption of finite amounts of energy. We show, both analytically and with numerical simulations, that in these cases the effective diffusion coefficient can be arbitrarily enhanced with respect to the case with constant velocity equal to the average speed. Our results may help interpret, in a new light observations on the diffusion enhancement of active particles.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad4024\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad4024","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

根据自推进机制的不同,活性粒子的推进速度会随时间变化,通常是周期性的。精确的推进速度曲线决定了粒子的均方位移和长时间的有效扩散系数。在这里,我们证明了任何周期性的推进速度曲线都会导致扩散系数大于推进速度恒定的相应情况。我们详细研究了周期性指数衰减速度脉冲,这是基于突然吸收有限能量的推进机制所预期的。我们通过分析和数值模拟证明,在这些情况下,有效扩散系数可以比恒定速度等于平均速度的情况任意增强。我们的结果可能有助于从一个新的角度解释对活性粒子扩散增强的观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of swimmer diffusion through regular kicks: analytic mapping of a scale-independent parameter space
Depending on their mechanism of self-propulsion, active particles can exhibit time-dependent, often periodic, propulsion velocity. The precise propulsion velocity profile determines their mean square displacement and their effective diffusion coefficient at long times. Here, we demonstrate that any periodic propulsion profile results in a larger diffusion coefficient than the corresponding case with constant propulsion velocity. We investigate, in detail, periodic exponentially decaying velocity pulses, expected in propulsion mechanisms based on sudden absorption of finite amounts of energy. We show, both analytically and with numerical simulations, that in these cases the effective diffusion coefficient can be arbitrarily enhanced with respect to the case with constant velocity equal to the average speed. Our results may help interpret, in a new light observations on the diffusion enhancement of active particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
12.50%
发文量
210
审稿时长
1.0 months
期刊介绍: JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged. The journal covers different topics which correspond to the following keyword sections. 1. Quantum statistical physics, condensed matter, integrable systems Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo 2. Classical statistical mechanics, equilibrium and non-equilibrium Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo 3. Disordered systems, classical and quantum Scientific Directors: Eduardo Fradkin and Riccardo Zecchina 4. Interdisciplinary statistical mechanics Scientific Directors: Matteo Marsili and Riccardo Zecchina 5. Biological modelling and information Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信