Lizeth N. Raygoza-Alcantar, Leopoldo Díaz-Pérez, Verónica C. Rosas-Espinoza, Carla V. Sánchez-Hernández, Joicye Hérnandez-Zulueta, Flor Rodríguez-Gómez, Fabián A. Rodríguez-Zaragoza
{"title":"从城市环境中的紫冠蜂鸟(Ramosomyia violiceps)粪便中分离出的芽孢杆菌属和假单胞菌M5的体外拮抗活性","authors":"Lizeth N. Raygoza-Alcantar, Leopoldo Díaz-Pérez, Verónica C. Rosas-Espinoza, Carla V. Sánchez-Hernández, Joicye Hérnandez-Zulueta, Flor Rodríguez-Gómez, Fabián A. Rodríguez-Zaragoza","doi":"10.1007/s13199-024-00998-0","DOIUrl":null,"url":null,"abstract":"<p>The gut microbiome of wild birds contributes to host fitness by supporting nutrient absorption, toxin processing, and immune function. It also fights bacterial pathogens through competitive exclusion and the production of antimicrobial metabolites. This study analyzed the in vitro antagonistic activity of bacteria isolated from the feces of the violet-crowned hummingbird (<i>Ramsomyia violiceps</i>) against strains of <i>Bacillus</i> spp., <i>Escherichia coli</i>, <i>Salmonella enterica</i>, and <i>Acinetobacter baumannii</i>. Mist nets were placed in three parks within the Guadalajara Metropolitan Area. Fecal samples were collected from captured <i>R. violiceps</i> and inoculated into culture media. Bacteria exhibiting antagonist activity were identified using molecular techniques that targeted the V1-V9 region of the 16S rRNA gene. The gut strains <i>Bacillus</i> sp. 1, <i>Bacillus</i> sp. 2, <i>B. altitudinis</i>, <i>B. thuringiensis</i>, and <i>B. subtilis</i> exhibited antagonistic activity against <i>Bacillus cereus</i>, <i>B. tequilensis</i>, and <i>A. baumannii</i>. <i>Pseudomonas putida</i> M5 antagonized <i>Bacillus</i> spp., <i>E. coli, S. enterica</i>, and <i>A. baumannii.</i> This result indicates that some <i>Bacillus</i> spp. and <i>Pseudomonas</i> spp. in the cultivable bacterial assembly of the gut of <i>R. violiceps</i> produce secondary metabolites that can inhibit the growth of both Gram-positive and Gram-negative strains. Since diet plays a determining role in the gut bacterial assemblage of birds, our results suggest that the strains that showed antagonistic activity in vitro could be related to the nectar consumed by the hummingbird. This may help promote the synthesis of antimicrobial compounds as a resistance mechanism.</p>","PeriodicalId":22123,"journal":{"name":"Symbiosis","volume":"24 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro antagonistic activity of Bacillus spp. and Pseudomonas putida M5 isolated from feces of the violet-crowned hummingbird (Ramosomyia violiceps) from an urban environment\",\"authors\":\"Lizeth N. Raygoza-Alcantar, Leopoldo Díaz-Pérez, Verónica C. Rosas-Espinoza, Carla V. Sánchez-Hernández, Joicye Hérnandez-Zulueta, Flor Rodríguez-Gómez, Fabián A. Rodríguez-Zaragoza\",\"doi\":\"10.1007/s13199-024-00998-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The gut microbiome of wild birds contributes to host fitness by supporting nutrient absorption, toxin processing, and immune function. It also fights bacterial pathogens through competitive exclusion and the production of antimicrobial metabolites. This study analyzed the in vitro antagonistic activity of bacteria isolated from the feces of the violet-crowned hummingbird (<i>Ramsomyia violiceps</i>) against strains of <i>Bacillus</i> spp., <i>Escherichia coli</i>, <i>Salmonella enterica</i>, and <i>Acinetobacter baumannii</i>. Mist nets were placed in three parks within the Guadalajara Metropolitan Area. Fecal samples were collected from captured <i>R. violiceps</i> and inoculated into culture media. Bacteria exhibiting antagonist activity were identified using molecular techniques that targeted the V1-V9 region of the 16S rRNA gene. The gut strains <i>Bacillus</i> sp. 1, <i>Bacillus</i> sp. 2, <i>B. altitudinis</i>, <i>B. thuringiensis</i>, and <i>B. subtilis</i> exhibited antagonistic activity against <i>Bacillus cereus</i>, <i>B. tequilensis</i>, and <i>A. baumannii</i>. <i>Pseudomonas putida</i> M5 antagonized <i>Bacillus</i> spp., <i>E. coli, S. enterica</i>, and <i>A. baumannii.</i> This result indicates that some <i>Bacillus</i> spp. and <i>Pseudomonas</i> spp. in the cultivable bacterial assembly of the gut of <i>R. violiceps</i> produce secondary metabolites that can inhibit the growth of both Gram-positive and Gram-negative strains. Since diet plays a determining role in the gut bacterial assemblage of birds, our results suggest that the strains that showed antagonistic activity in vitro could be related to the nectar consumed by the hummingbird. This may help promote the synthesis of antimicrobial compounds as a resistance mechanism.</p>\",\"PeriodicalId\":22123,\"journal\":{\"name\":\"Symbiosis\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbiosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13199-024-00998-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbiosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13199-024-00998-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
In vitro antagonistic activity of Bacillus spp. and Pseudomonas putida M5 isolated from feces of the violet-crowned hummingbird (Ramosomyia violiceps) from an urban environment
The gut microbiome of wild birds contributes to host fitness by supporting nutrient absorption, toxin processing, and immune function. It also fights bacterial pathogens through competitive exclusion and the production of antimicrobial metabolites. This study analyzed the in vitro antagonistic activity of bacteria isolated from the feces of the violet-crowned hummingbird (Ramsomyia violiceps) against strains of Bacillus spp., Escherichia coli, Salmonella enterica, and Acinetobacter baumannii. Mist nets were placed in three parks within the Guadalajara Metropolitan Area. Fecal samples were collected from captured R. violiceps and inoculated into culture media. Bacteria exhibiting antagonist activity were identified using molecular techniques that targeted the V1-V9 region of the 16S rRNA gene. The gut strains Bacillus sp. 1, Bacillus sp. 2, B. altitudinis, B. thuringiensis, and B. subtilis exhibited antagonistic activity against Bacillus cereus, B. tequilensis, and A. baumannii. Pseudomonas putida M5 antagonized Bacillus spp., E. coli, S. enterica, and A. baumannii. This result indicates that some Bacillus spp. and Pseudomonas spp. in the cultivable bacterial assembly of the gut of R. violiceps produce secondary metabolites that can inhibit the growth of both Gram-positive and Gram-negative strains. Since diet plays a determining role in the gut bacterial assemblage of birds, our results suggest that the strains that showed antagonistic activity in vitro could be related to the nectar consumed by the hummingbird. This may help promote the synthesis of antimicrobial compounds as a resistance mechanism.
期刊介绍:
Since 1985, Symbiosis publishes original research that contributes to the understanding of symbiotic interactions in a wide range of associations at the molecular, cellular and organismic level. Reviews and short communications on well-known or new symbioses are welcomed as are book reviews and obituaries. This spectrum of papers aims to encourage and enhance interactions among researchers in this rapidly expanding field.
Topics of interest include nutritional interactions; mutual regulatory and morphogenetic effects; structural co-adaptations; interspecific recognition; specificity; ecological adaptations; evolutionary consequences of symbiosis; and methods used for symbiotic research.