通用多带切尔绝缘体中的环路单元和相带拓扑不变性

Xi Wu, Ze Yang, Fuxiang Li
{"title":"通用多带切尔绝缘体中的环路单元和相带拓扑不变性","authors":"Xi Wu, Ze Yang, Fuxiang Li","doi":"arxiv-2406.09797","DOIUrl":null,"url":null,"abstract":"Quench dynamics of topological phases have been studied in the past few years\nand dynamical topological invariants are formulated in different ways. Yet most\nof these invariants are limited to minimal systems in which Hamiltonians are\nexpanded by Gamma matrices. Here we generalize the dynamical 3-winding-number\nin two-band systems into the one in generic multi-band Chern insulators and\nprove that its value is equal to the difference of Chern numbers between\npost-quench and pre-quench Hamiltonians. Moreover we obtain an expression of\nthis dynamical 3-winding-number represented by gapless fermions in phase bands\ndepending only on the phase and its projectors, so it is generic for the quench\nof all multi-band Chern insulators. Besides, we obtain a multifold fermion in\nthe phase band in (k, t) space by quenching a three-band model, which cannot\nhappen for two band models.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loop unitary and phase band topological invariant in generic multi-band Chern insulators\",\"authors\":\"Xi Wu, Ze Yang, Fuxiang Li\",\"doi\":\"arxiv-2406.09797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quench dynamics of topological phases have been studied in the past few years\\nand dynamical topological invariants are formulated in different ways. Yet most\\nof these invariants are limited to minimal systems in which Hamiltonians are\\nexpanded by Gamma matrices. Here we generalize the dynamical 3-winding-number\\nin two-band systems into the one in generic multi-band Chern insulators and\\nprove that its value is equal to the difference of Chern numbers between\\npost-quench and pre-quench Hamiltonians. Moreover we obtain an expression of\\nthis dynamical 3-winding-number represented by gapless fermions in phase bands\\ndepending only on the phase and its projectors, so it is generic for the quench\\nof all multi-band Chern insulators. Besides, we obtain a multifold fermion in\\nthe phase band in (k, t) space by quenching a three-band model, which cannot\\nhappen for two band models.\",\"PeriodicalId\":501191,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.09797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拓扑相的淬火动力学在过去几年中得到了研究,并以不同的方式提出了动力学拓扑不变式。然而,这些不变式大多局限于由伽马矩阵扩展哈密尔顿的最小系统。在这里,我们将双带系统中的动态三风数推广到一般多带切尔绝缘体中的动态三风数,并证明其值等于淬火后和淬火前哈密尔顿的切尔数之差。此外,我们还得到了相带中无间隙费米子所代表的动态三绕组数的表达式,该表达式只取决于相位及其投影,因此它对于所有多带切尔绝缘体的淬火都是通用的。此外,通过淬火三带模型,我们在(k,t)空间的相带中得到了一个多折费米子,这在两带模型中是不可能发生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Loop unitary and phase band topological invariant in generic multi-band Chern insulators
Quench dynamics of topological phases have been studied in the past few years and dynamical topological invariants are formulated in different ways. Yet most of these invariants are limited to minimal systems in which Hamiltonians are expanded by Gamma matrices. Here we generalize the dynamical 3-winding-number in two-band systems into the one in generic multi-band Chern insulators and prove that its value is equal to the difference of Chern numbers between post-quench and pre-quench Hamiltonians. Moreover we obtain an expression of this dynamical 3-winding-number represented by gapless fermions in phase bands depending only on the phase and its projectors, so it is generic for the quench of all multi-band Chern insulators. Besides, we obtain a multifold fermion in the phase band in (k, t) space by quenching a three-band model, which cannot happen for two band models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信