别列津斯基--科斯特利茨--蜂巢晶格上二维$XY$模型的无穷过渡

Fu-Jiun Jiang
{"title":"别列津斯基--科斯特利茨--蜂巢晶格上二维$XY$模型的无穷过渡","authors":"Fu-Jiun Jiang","doi":"arxiv-2406.14812","DOIUrl":null,"url":null,"abstract":"The Berezinskii--Kosterlitz--Thouless (BKT) transition of the two-dimensional\n$XY$ model on the honeycomb lattice is investigated using both the techniques\nof Neural Network (NN) and Monte Carlo simulations. It is demonstrated in the\nliterature that with certain plausible assumptions, the associated critical\ntemperature $T_{\\text{BKT,H}}$ is found to be $\\frac{1}{\\sqrt{2}}$ exactly.\nSurprisingly, the value of $T_{\\text{BKT,H}}$ obtained from our NN calculations\nis 0.560(9) which deviates significantly from $\\frac{1}{\\sqrt{2}}$. In\naddition, based on the helicity modulus, the $T_{\\text{BKT,H}}$ determined is\n0.571(8) agreeing well with that resulting from the NN estimation. The outcomes\npresented in this study indicate that a detailed analytic calculation is\ndesirable to solve the found discrepancy.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Berezinskii--Kosterlitz--Thouless transition of the two-dimensional $XY$ model on the honeycomb lattice\",\"authors\":\"Fu-Jiun Jiang\",\"doi\":\"arxiv-2406.14812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Berezinskii--Kosterlitz--Thouless (BKT) transition of the two-dimensional\\n$XY$ model on the honeycomb lattice is investigated using both the techniques\\nof Neural Network (NN) and Monte Carlo simulations. It is demonstrated in the\\nliterature that with certain plausible assumptions, the associated critical\\ntemperature $T_{\\\\text{BKT,H}}$ is found to be $\\\\frac{1}{\\\\sqrt{2}}$ exactly.\\nSurprisingly, the value of $T_{\\\\text{BKT,H}}$ obtained from our NN calculations\\nis 0.560(9) which deviates significantly from $\\\\frac{1}{\\\\sqrt{2}}$. In\\naddition, based on the helicity modulus, the $T_{\\\\text{BKT,H}}$ determined is\\n0.571(8) agreeing well with that resulting from the NN estimation. The outcomes\\npresented in this study indicate that a detailed analytic calculation is\\ndesirable to solve the found discrepancy.\",\"PeriodicalId\":501191,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.14812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.14812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用神经网络(NN)和蒙特卡洛模拟技术研究了蜂窝晶格上二维 XY$ 模型的贝列津斯基--科斯特利兹--无图(BKT)转变。文献表明,在某些可信的假设条件下,相关临界温度$T_{text{BKT,H}}$恰好为$\frac{1}\{sqrt{2}}$。令人惊讶的是,我们通过神经网络计算得到的$T_{text{BKT,H}}$值为0.560(9),与$\frac{1}\{sqrt{2}}$有很大偏差。此外,根据螺旋模量,我们得到的$T_{text/{BKT,H}}$为0.571(8),与NN估计的结果非常吻合。本研究的结果表明,要解决发现的差异,需要进行详细的分析计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Berezinskii--Kosterlitz--Thouless transition of the two-dimensional $XY$ model on the honeycomb lattice
The Berezinskii--Kosterlitz--Thouless (BKT) transition of the two-dimensional $XY$ model on the honeycomb lattice is investigated using both the techniques of Neural Network (NN) and Monte Carlo simulations. It is demonstrated in the literature that with certain plausible assumptions, the associated critical temperature $T_{\text{BKT,H}}$ is found to be $\frac{1}{\sqrt{2}}$ exactly. Surprisingly, the value of $T_{\text{BKT,H}}$ obtained from our NN calculations is 0.560(9) which deviates significantly from $\frac{1}{\sqrt{2}}$. In addition, based on the helicity modulus, the $T_{\text{BKT,H}}$ determined is 0.571(8) agreeing well with that resulting from the NN estimation. The outcomes presented in this study indicate that a detailed analytic calculation is desirable to solve the found discrepancy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信