$\mathbb S^2$ 上的伊辛模型

Richard C. Brower, Evan K. Owen
{"title":"$\\mathbb S^2$ 上的伊辛模型","authors":"Richard C. Brower, Evan K. Owen","doi":"arxiv-2407.00459","DOIUrl":null,"url":null,"abstract":"We define a 2-dimensional Ising model on a triangulated sphere, $\\mathbb S^2$, designed to approach the exact conformal field theory (CFT) in the continuum limit. Surprisingly, the derivation leads to a set of geometric constraints that the lattice field theory must satisfy. Monte Carlo simulations are in agreement with the exact Ising CFT on $\\mathbb S^2$. We discuss the inherent benefits of using non-uniform simplicial lattices and how these methods may be generalized for use with other quantum theories on curved manifolds.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ising Model on $\\\\mathbb S^2$\",\"authors\":\"Richard C. Brower, Evan K. Owen\",\"doi\":\"arxiv-2407.00459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a 2-dimensional Ising model on a triangulated sphere, $\\\\mathbb S^2$, designed to approach the exact conformal field theory (CFT) in the continuum limit. Surprisingly, the derivation leads to a set of geometric constraints that the lattice field theory must satisfy. Monte Carlo simulations are in agreement with the exact Ising CFT on $\\\\mathbb S^2$. We discuss the inherent benefits of using non-uniform simplicial lattices and how these methods may be generalized for use with other quantum theories on curved manifolds.\",\"PeriodicalId\":501191,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Lattice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.00459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了三角球上的二维伊辛模型--$\mathbb S^2$,旨在接近连续极限中的精确共形场论(CFT)。出乎意料的是,推导出了一套网格场论必须满足的几何约束。蒙特卡罗模拟与 $\mathbb S^2$ 上的精确伊辛 CFT 相一致。我们讨论了使用非均匀简面晶格的固有优势,以及如何将这些方法推广用于曲线流形上的其他量子理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Ising Model on $\mathbb S^2$
We define a 2-dimensional Ising model on a triangulated sphere, $\mathbb S^2$, designed to approach the exact conformal field theory (CFT) in the continuum limit. Surprisingly, the derivation leads to a set of geometric constraints that the lattice field theory must satisfy. Monte Carlo simulations are in agreement with the exact Ising CFT on $\mathbb S^2$. We discuss the inherent benefits of using non-uniform simplicial lattices and how these methods may be generalized for use with other quantum theories on curved manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信