Hongmei Zhang, Changwu Lv, Jixi Guo, Talgar Shaymurat, Hongbin Yao
{"title":"原位构建 RuS2 纳米晶体装饰的无定形 NiSx 纳米片,用于工业电流密度的水分离","authors":"Hongmei Zhang, Changwu Lv, Jixi Guo, Talgar Shaymurat, Hongbin Yao","doi":"10.1016/j.mtener.2024.101616","DOIUrl":null,"url":null,"abstract":"Developing enabling electrocatalysts for water splitting to operate at industrial-current-density is crucial for large-scale hydrogen production. Herein, a facile wet-chemistry strategy and scalable in-situ sulfidation technique are designed for formation of RuS nanocrystal-decorated amorphous NiS nanosheets vertically aligned on Ni foam (NF) (RuNiS/NF) as ultra-highly efficient electrocatalysts for electrochemical water splitting (EWS). The optimized electrocatalyst exhibits an excellent hydrogen evolution reaction (HER) performance, requiring overpotentials of only 15, 50, and 114 mV at 10, 100, and 1000 mA/cm, respectively, with robust stability at 10, 100, and 500 mA/cm for 120 h, ranking it one of the efficient electrocatalysts for industrial water electrolysis. The electron redistribution over heterointerfaces induces the modulatory electronic states of heterostructures, thus leading to the favorable adsorption behavior for reaction intermediates, enhancing intrinsic activity of active sites. Impressively, a RuNiS/NF||RuNiS/NF EWS device can afford industrial current densities of 10, 100, and 500 mA/cm at voltages of 1.55, 1.77, and 2.35 V, respectively, together with robust durability for over 50 h (@1000 mA/cm). This work provides an innovative approach to design unique heterostructures for industrial EWS via modulatory electronic states.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ construction of RuS2 nanocrystal-decorated amorphous NiSx nanosheets for industrial-current-density water splitting\",\"authors\":\"Hongmei Zhang, Changwu Lv, Jixi Guo, Talgar Shaymurat, Hongbin Yao\",\"doi\":\"10.1016/j.mtener.2024.101616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing enabling electrocatalysts for water splitting to operate at industrial-current-density is crucial for large-scale hydrogen production. Herein, a facile wet-chemistry strategy and scalable in-situ sulfidation technique are designed for formation of RuS nanocrystal-decorated amorphous NiS nanosheets vertically aligned on Ni foam (NF) (RuNiS/NF) as ultra-highly efficient electrocatalysts for electrochemical water splitting (EWS). The optimized electrocatalyst exhibits an excellent hydrogen evolution reaction (HER) performance, requiring overpotentials of only 15, 50, and 114 mV at 10, 100, and 1000 mA/cm, respectively, with robust stability at 10, 100, and 500 mA/cm for 120 h, ranking it one of the efficient electrocatalysts for industrial water electrolysis. The electron redistribution over heterointerfaces induces the modulatory electronic states of heterostructures, thus leading to the favorable adsorption behavior for reaction intermediates, enhancing intrinsic activity of active sites. Impressively, a RuNiS/NF||RuNiS/NF EWS device can afford industrial current densities of 10, 100, and 500 mA/cm at voltages of 1.55, 1.77, and 2.35 V, respectively, together with robust durability for over 50 h (@1000 mA/cm). This work provides an innovative approach to design unique heterostructures for industrial EWS via modulatory electronic states.\",\"PeriodicalId\":18277,\"journal\":{\"name\":\"Materials Today Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtener.2024.101616\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101616","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
In-situ construction of RuS2 nanocrystal-decorated amorphous NiSx nanosheets for industrial-current-density water splitting
Developing enabling electrocatalysts for water splitting to operate at industrial-current-density is crucial for large-scale hydrogen production. Herein, a facile wet-chemistry strategy and scalable in-situ sulfidation technique are designed for formation of RuS nanocrystal-decorated amorphous NiS nanosheets vertically aligned on Ni foam (NF) (RuNiS/NF) as ultra-highly efficient electrocatalysts for electrochemical water splitting (EWS). The optimized electrocatalyst exhibits an excellent hydrogen evolution reaction (HER) performance, requiring overpotentials of only 15, 50, and 114 mV at 10, 100, and 1000 mA/cm, respectively, with robust stability at 10, 100, and 500 mA/cm for 120 h, ranking it one of the efficient electrocatalysts for industrial water electrolysis. The electron redistribution over heterointerfaces induces the modulatory electronic states of heterostructures, thus leading to the favorable adsorption behavior for reaction intermediates, enhancing intrinsic activity of active sites. Impressively, a RuNiS/NF||RuNiS/NF EWS device can afford industrial current densities of 10, 100, and 500 mA/cm at voltages of 1.55, 1.77, and 2.35 V, respectively, together with robust durability for over 50 h (@1000 mA/cm). This work provides an innovative approach to design unique heterostructures for industrial EWS via modulatory electronic states.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials