{"title":"基于环境影响因素的 LightGBM-BES-BiLSTM 碳价格预测","authors":"Peipei Wang, Xiaoping Zhou, Zhaonan Zeng","doi":"10.1007/s10614-024-10648-8","DOIUrl":null,"url":null,"abstract":"<p>A carbon trading price fusion prediction model is proposed to capture the non-linear, non-stationary, multi-frequency, and other irregular characteristics of carbon price data, as well as the temporal periodicity of environmental factors. Firstly, an adaptive Symmetric geometric mode decomposition method is introduced to address the irregularities in carbon trading prices, including nonlinearity, non-stationarity, and multi-frequency. Bubble entropy is employed to extract global features in the frequency and time domains of carbon price data. Secondly, to handle the nonlinearity, temporal periodicity, and noise in environmental influencing factors, a mapping function between the frequency components of carbon price data and environmental influencing factors is established using LightGBM (Light gradient boosting machine) with a regularization term, enabling enhanced fusion of carbon price data features. Thirdly, a Bald Eagle Search-optimized Bi-directional long short-term memory (BiLSTM) model is proposed for predicting carbon prices with different cycle and frequency components. Finally, experimental results demonstrate the superior performance of the proposed fusion prediction model over other models.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"28 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LightGBM-BES-BiLSTM Carbon Price Prediction Based on Environmental Impact Factors\",\"authors\":\"Peipei Wang, Xiaoping Zhou, Zhaonan Zeng\",\"doi\":\"10.1007/s10614-024-10648-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A carbon trading price fusion prediction model is proposed to capture the non-linear, non-stationary, multi-frequency, and other irregular characteristics of carbon price data, as well as the temporal periodicity of environmental factors. Firstly, an adaptive Symmetric geometric mode decomposition method is introduced to address the irregularities in carbon trading prices, including nonlinearity, non-stationarity, and multi-frequency. Bubble entropy is employed to extract global features in the frequency and time domains of carbon price data. Secondly, to handle the nonlinearity, temporal periodicity, and noise in environmental influencing factors, a mapping function between the frequency components of carbon price data and environmental influencing factors is established using LightGBM (Light gradient boosting machine) with a regularization term, enabling enhanced fusion of carbon price data features. Thirdly, a Bald Eagle Search-optimized Bi-directional long short-term memory (BiLSTM) model is proposed for predicting carbon prices with different cycle and frequency components. Finally, experimental results demonstrate the superior performance of the proposed fusion prediction model over other models.</p>\",\"PeriodicalId\":50647,\"journal\":{\"name\":\"Computational Economics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10648-8\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10648-8","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
LightGBM-BES-BiLSTM Carbon Price Prediction Based on Environmental Impact Factors
A carbon trading price fusion prediction model is proposed to capture the non-linear, non-stationary, multi-frequency, and other irregular characteristics of carbon price data, as well as the temporal periodicity of environmental factors. Firstly, an adaptive Symmetric geometric mode decomposition method is introduced to address the irregularities in carbon trading prices, including nonlinearity, non-stationarity, and multi-frequency. Bubble entropy is employed to extract global features in the frequency and time domains of carbon price data. Secondly, to handle the nonlinearity, temporal periodicity, and noise in environmental influencing factors, a mapping function between the frequency components of carbon price data and environmental influencing factors is established using LightGBM (Light gradient boosting machine) with a regularization term, enabling enhanced fusion of carbon price data features. Thirdly, a Bald Eagle Search-optimized Bi-directional long short-term memory (BiLSTM) model is proposed for predicting carbon prices with different cycle and frequency components. Finally, experimental results demonstrate the superior performance of the proposed fusion prediction model over other models.
期刊介绍:
Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing