基于环境影响因素的 LightGBM-BES-BiLSTM 碳价格预测

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peipei Wang, Xiaoping Zhou, Zhaonan Zeng
{"title":"基于环境影响因素的 LightGBM-BES-BiLSTM 碳价格预测","authors":"Peipei Wang, Xiaoping Zhou, Zhaonan Zeng","doi":"10.1007/s10614-024-10648-8","DOIUrl":null,"url":null,"abstract":"<p>A carbon trading price fusion prediction model is proposed to capture the non-linear, non-stationary, multi-frequency, and other irregular characteristics of carbon price data, as well as the temporal periodicity of environmental factors. Firstly, an adaptive Symmetric geometric mode decomposition method is introduced to address the irregularities in carbon trading prices, including nonlinearity, non-stationarity, and multi-frequency. Bubble entropy is employed to extract global features in the frequency and time domains of carbon price data. Secondly, to handle the nonlinearity, temporal periodicity, and noise in environmental influencing factors, a mapping function between the frequency components of carbon price data and environmental influencing factors is established using LightGBM (Light gradient boosting machine) with a regularization term, enabling enhanced fusion of carbon price data features. Thirdly, a Bald Eagle Search-optimized Bi-directional long short-term memory (BiLSTM) model is proposed for predicting carbon prices with different cycle and frequency components. Finally, experimental results demonstrate the superior performance of the proposed fusion prediction model over other models.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"28 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LightGBM-BES-BiLSTM Carbon Price Prediction Based on Environmental Impact Factors\",\"authors\":\"Peipei Wang, Xiaoping Zhou, Zhaonan Zeng\",\"doi\":\"10.1007/s10614-024-10648-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A carbon trading price fusion prediction model is proposed to capture the non-linear, non-stationary, multi-frequency, and other irregular characteristics of carbon price data, as well as the temporal periodicity of environmental factors. Firstly, an adaptive Symmetric geometric mode decomposition method is introduced to address the irregularities in carbon trading prices, including nonlinearity, non-stationarity, and multi-frequency. Bubble entropy is employed to extract global features in the frequency and time domains of carbon price data. Secondly, to handle the nonlinearity, temporal periodicity, and noise in environmental influencing factors, a mapping function between the frequency components of carbon price data and environmental influencing factors is established using LightGBM (Light gradient boosting machine) with a regularization term, enabling enhanced fusion of carbon price data features. Thirdly, a Bald Eagle Search-optimized Bi-directional long short-term memory (BiLSTM) model is proposed for predicting carbon prices with different cycle and frequency components. Finally, experimental results demonstrate the superior performance of the proposed fusion prediction model over other models.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10648-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10648-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

针对碳交易价格数据的非线性、非平稳、多频等不规则特征以及环境因素的时间周期性,提出了一种碳交易价格融合预测模型。首先,针对碳交易价格的非线性、非平稳性和多频率等不规则性,引入了自适应对称几何模态分解方法。利用气泡熵提取碳价格数据频域和时域的全局特征。其次,为处理环境影响因素的非线性、时间周期性和噪声,利用带正则化项的光梯度提升机(LightGBM)建立了碳价格数据频率成分与环境影响因素之间的映射函数,从而增强了碳价格数据特征的融合。第三,提出了一种秃鹰搜索优化的双向长短期记忆(BiLSTM)模型,用于预测不同周期和频率成分的碳价格。最后,实验结果表明,所提出的融合预测模型的性能优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

LightGBM-BES-BiLSTM Carbon Price Prediction Based on Environmental Impact Factors

LightGBM-BES-BiLSTM Carbon Price Prediction Based on Environmental Impact Factors

A carbon trading price fusion prediction model is proposed to capture the non-linear, non-stationary, multi-frequency, and other irregular characteristics of carbon price data, as well as the temporal periodicity of environmental factors. Firstly, an adaptive Symmetric geometric mode decomposition method is introduced to address the irregularities in carbon trading prices, including nonlinearity, non-stationarity, and multi-frequency. Bubble entropy is employed to extract global features in the frequency and time domains of carbon price data. Secondly, to handle the nonlinearity, temporal periodicity, and noise in environmental influencing factors, a mapping function between the frequency components of carbon price data and environmental influencing factors is established using LightGBM (Light gradient boosting machine) with a regularization term, enabling enhanced fusion of carbon price data features. Thirdly, a Bald Eagle Search-optimized Bi-directional long short-term memory (BiLSTM) model is proposed for predicting carbon prices with different cycle and frequency components. Finally, experimental results demonstrate the superior performance of the proposed fusion prediction model over other models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信