具有乘以最高衍生物的小参数的凸域中比星形最优分布式控制问题解的渐近性

Pub Date : 2024-06-13 DOI:10.1134/s0965542524700210
A. R. Danilin
{"title":"具有乘以最高衍生物的小参数的凸域中比星形最优分布式控制问题解的渐近性","authors":"A. R. Danilin","doi":"10.1134/s0965542524700210","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We consider an optimal distributed control problem in a strictly convex planar domain with a smooth boundary and a small parameter multiplying a highest derivative of an elliptic operator. A zero Dirichlet condition is set on the boundary of the domain, and control is additively involved in the inhomogeneity. The set of admissible controls is the unit ball in the corresponding space of square integrable functions. The solutions of the obtained boundary value problems are considered in the generalized sense as elements of a Hilbert space. The optimality criterion is the sum of the squared norm of the deviation of the state from a given state and the squared norm of the control with some coefficient. Due to this structure of the optimality criterion, the role of the first or second term of the criterion can be strengthen, if necessary. It is more important to achieve a given state in the first case and to minimize the resource cost in the second case. The asymptotics of the problem generated by the sum of a second-order differential operator with a small coefficient at a highest derivative and a zero-order differential operator is studied in detail.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of the Solution of a Bisingular Optimal Distributed Control Problem in a Convex Domain with a Small Parameter Multiplying a Highest Derivative\",\"authors\":\"A. R. Danilin\",\"doi\":\"10.1134/s0965542524700210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>We consider an optimal distributed control problem in a strictly convex planar domain with a smooth boundary and a small parameter multiplying a highest derivative of an elliptic operator. A zero Dirichlet condition is set on the boundary of the domain, and control is additively involved in the inhomogeneity. The set of admissible controls is the unit ball in the corresponding space of square integrable functions. The solutions of the obtained boundary value problems are considered in the generalized sense as elements of a Hilbert space. The optimality criterion is the sum of the squared norm of the deviation of the state from a given state and the squared norm of the control with some coefficient. Due to this structure of the optimality criterion, the role of the first or second term of the criterion can be strengthen, if necessary. It is more important to achieve a given state in the first case and to minimize the resource cost in the second case. The asymptotics of the problem generated by the sum of a second-order differential operator with a small coefficient at a highest derivative and a zero-order differential operator is studied in detail.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了一个严格凸平面域中的最优分布式控制问题,该域具有光滑边界和一个乘以椭圆算子最高导数的小参数。在该域的边界上设置了一个零 Dirichlet 条件,控制与不均匀性相加。可接受的控制集是相应的平方可积分函数空间中的单位球。所得到的边界值问题解在广义上被视为希尔伯特空间的元素。最优性准则是状态偏离给定状态的平方准则与带有一定系数的控制平方准则之和。由于最优化准则的这种结构,必要时可以加强准则第一项或第二项的作用。在第一种情况下,实现给定状态更为重要,而在第二种情况下,资源成本最小化更为重要。本文详细研究了最高导数系数较小的二阶微分算子与零阶微分算子之和所产生问题的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotics of the Solution of a Bisingular Optimal Distributed Control Problem in a Convex Domain with a Small Parameter Multiplying a Highest Derivative

Abstract

We consider an optimal distributed control problem in a strictly convex planar domain with a smooth boundary and a small parameter multiplying a highest derivative of an elliptic operator. A zero Dirichlet condition is set on the boundary of the domain, and control is additively involved in the inhomogeneity. The set of admissible controls is the unit ball in the corresponding space of square integrable functions. The solutions of the obtained boundary value problems are considered in the generalized sense as elements of a Hilbert space. The optimality criterion is the sum of the squared norm of the deviation of the state from a given state and the squared norm of the control with some coefficient. Due to this structure of the optimality criterion, the role of the first or second term of the criterion can be strengthen, if necessary. It is more important to achieve a given state in the first case and to minimize the resource cost in the second case. The asymptotics of the problem generated by the sum of a second-order differential operator with a small coefficient at a highest derivative and a zero-order differential operator is studied in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信