基于香农小波的密闭原子和离子托马斯-费米模型近似方案

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED
Sharda Kumari, Pratik Majhi, M. M. Panja
{"title":"基于香农小波的密闭原子和离子托马斯-费米模型近似方案","authors":"Sharda Kumari, Pratik Majhi, M. M. Panja","doi":"10.1134/s0965542524700350","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>An efficient numerical scheme based on the Shannon wavelet basis has been presented here for obtaining highly accurate approximate solutions of Thomas–Fermi equations (TFE) in the finite domain with various initial/boundary conditions (IC/BCs). A point transformation followed by a finite Whittaker Cardinal function approximation (FWCFA) is employed here. The formula relating exponent <span>\\(n\\)</span> in the desired order of accuracy (<span>\\(O{{(10}^{{ - n}}})\\)</span>) with the resolution <span>\\(J\\)</span>, the lower and upper limits in the sum of FWCFA have been provided. Examples of TFE with various IC/BCs have been exercised to exhibit the elegance and efficiency of the present scheme.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Shannon Wavelet-Based Approximation Scheme for Thomas–Fermi Models of Confined Atoms and Ions\",\"authors\":\"Sharda Kumari, Pratik Majhi, M. M. Panja\",\"doi\":\"10.1134/s0965542524700350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>An efficient numerical scheme based on the Shannon wavelet basis has been presented here for obtaining highly accurate approximate solutions of Thomas–Fermi equations (TFE) in the finite domain with various initial/boundary conditions (IC/BCs). A point transformation followed by a finite Whittaker Cardinal function approximation (FWCFA) is employed here. The formula relating exponent <span>\\\\(n\\\\)</span> in the desired order of accuracy (<span>\\\\(O{{(10}^{{ - n}}})\\\\)</span>) with the resolution <span>\\\\(J\\\\)</span>, the lower and upper limits in the sum of FWCFA have been provided. Examples of TFE with various IC/BCs have been exercised to exhibit the elegance and efficiency of the present scheme.</p>\",\"PeriodicalId\":55230,\"journal\":{\"name\":\"Computational Mathematics and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700350\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700350","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文提出了一种基于香农小波基的高效数值方案,用于在有限域中获得具有各种初始/边界条件(IC/BC)的托马斯-费米方程(TFE)的高精度近似解。这里采用的是点变换后的有限惠特克卡迪纳函数近似(FWCFA)。提供了所需精度等级(\(O{(10}^{-n}})\)的指数\(n\)与分辨率\(J\)、FWCFA 总和的下限和上限的相关公式。为了展示本方案的优雅和高效,我们还使用了不同 IC/BC 的 TFE 示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Shannon Wavelet-Based Approximation Scheme for Thomas–Fermi Models of Confined Atoms and Ions

A Shannon Wavelet-Based Approximation Scheme for Thomas–Fermi Models of Confined Atoms and Ions

Abstract

An efficient numerical scheme based on the Shannon wavelet basis has been presented here for obtaining highly accurate approximate solutions of Thomas–Fermi equations (TFE) in the finite domain with various initial/boundary conditions (IC/BCs). A point transformation followed by a finite Whittaker Cardinal function approximation (FWCFA) is employed here. The formula relating exponent \(n\) in the desired order of accuracy (\(O{{(10}^{{ - n}}})\)) with the resolution \(J\), the lower and upper limits in the sum of FWCFA have been provided. Examples of TFE with various IC/BCs have been exercised to exhibit the elegance and efficiency of the present scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信