超数广义四元数

Pub Date : 2024-06-13 DOI:10.1134/s0965542524700337
Y. Alagöz, G. Özyurt
{"title":"超数广义四元数","authors":"Y. Alagöz, G. Özyurt","doi":"10.1134/s0965542524700337","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The main aim of this paper is to introduce generalized quaternions with hyper-number coefficients. For this, firstly, a new number system is defined, which is the generalization of bicomplex numbers, hyper-double numbers and hyper-dual numbers. And any element of this generalization is called a hyper-number. Then, real matrix representation and vector representation of a hyper-number are given. Secondly, hyper-number generalized quaternions and their algebraic properties are introduced. For a hyper-number generalized quaternion, <span>\\(4 \\times 4\\)</span> real generalized quaternion matrix representation is presented. Next, because of lack of commutativity, for a hyper-number generalized quaternion, two different hyper-number matrix representations are calculated. Moreover, real matrix representations of a hyper-number generalized quaternion is expressed by matrix representation of a hyper-number. Finally, vector representations of a hyper-number generalized quaternion are given and properties of this representations are investigated.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyper-Number Generalized Quaternions\",\"authors\":\"Y. Alagöz, G. Özyurt\",\"doi\":\"10.1134/s0965542524700337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The main aim of this paper is to introduce generalized quaternions with hyper-number coefficients. For this, firstly, a new number system is defined, which is the generalization of bicomplex numbers, hyper-double numbers and hyper-dual numbers. And any element of this generalization is called a hyper-number. Then, real matrix representation and vector representation of a hyper-number are given. Secondly, hyper-number generalized quaternions and their algebraic properties are introduced. For a hyper-number generalized quaternion, <span>\\\\(4 \\\\times 4\\\\)</span> real generalized quaternion matrix representation is presented. Next, because of lack of commutativity, for a hyper-number generalized quaternion, two different hyper-number matrix representations are calculated. Moreover, real matrix representations of a hyper-number generalized quaternion is expressed by matrix representation of a hyper-number. Finally, vector representations of a hyper-number generalized quaternion are given and properties of this representations are investigated.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524700337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524700337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文的主要目的是介绍具有超数系数的广义四元数。为此,首先定义了一个新的数系,它是二复数、超双数和超二数的广义。这种概括的任何元素都称为超数。然后,给出了超数的实矩阵表示法和向量表示法。其次,介绍超数广义四元数及其代数性质。对于超数广义四元数,给出了(4 次)实数广义四元数矩阵表示。接下来,由于缺乏交换性,对于一个超数广义四元数,计算了两个不同的超数矩阵表示。此外,超数广义四元数的实数矩阵表示是通过超数的矩阵表示来表达的。最后,给出了超数广义四元数的矢量表示,并研究了这些表示的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hyper-Number Generalized Quaternions

Abstract

The main aim of this paper is to introduce generalized quaternions with hyper-number coefficients. For this, firstly, a new number system is defined, which is the generalization of bicomplex numbers, hyper-double numbers and hyper-dual numbers. And any element of this generalization is called a hyper-number. Then, real matrix representation and vector representation of a hyper-number are given. Secondly, hyper-number generalized quaternions and their algebraic properties are introduced. For a hyper-number generalized quaternion, \(4 \times 4\) real generalized quaternion matrix representation is presented. Next, because of lack of commutativity, for a hyper-number generalized quaternion, two different hyper-number matrix representations are calculated. Moreover, real matrix representations of a hyper-number generalized quaternion is expressed by matrix representation of a hyper-number. Finally, vector representations of a hyper-number generalized quaternion are given and properties of this representations are investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信