几乎自由群组内定点的最终定点

IF 0.6 4区 数学 Q3 MATHEMATICS
André Carvalho
{"title":"几乎自由群组内定点的最终定点","authors":"André Carvalho","doi":"10.1093/qmath/haae032","DOIUrl":null,"url":null,"abstract":"We consider the subgroup of points of finite orbit through the action of an endomorphism of a finitely generated virtually free group, with particular emphasis on the subgroup of eventually fixed points, $\\text{EvFix}(\\varphi)$: points whose orbit contains a fixed point. We provide an algorithm to compute the subgroup of fixed points of an endomorphism of a finitely generated virtually free group and prove that finite orbits have cardinality bounded by a computable constant, which allows us to solve several algorithmic problems: deciding if φ is a finite order element of $\\text{End}(G)$, if φ is aperiodic, if $\\text{EvFix}(\\varphi)$ is finitely generated and if $\\text{EvFix}(\\varphi)$ is a normal subgroup. In the cases where $\\text{EvFix}(\\varphi)$ is finitely generated, we also present a bound for its rank and an algorithm to compute a generating set.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":"79 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eventually fixed points of endomorphisms of virtually free groups\",\"authors\":\"André Carvalho\",\"doi\":\"10.1093/qmath/haae032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the subgroup of points of finite orbit through the action of an endomorphism of a finitely generated virtually free group, with particular emphasis on the subgroup of eventually fixed points, $\\\\text{EvFix}(\\\\varphi)$: points whose orbit contains a fixed point. We provide an algorithm to compute the subgroup of fixed points of an endomorphism of a finitely generated virtually free group and prove that finite orbits have cardinality bounded by a computable constant, which allows us to solve several algorithmic problems: deciding if φ is a finite order element of $\\\\text{End}(G)$, if φ is aperiodic, if $\\\\text{EvFix}(\\\\varphi)$ is finitely generated and if $\\\\text{EvFix}(\\\\varphi)$ is a normal subgroup. In the cases where $\\\\text{EvFix}(\\\\varphi)$ is finitely generated, we also present a bound for its rank and an algorithm to compute a generating set.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haae032\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑通过有限生成的无形似群的内态化作用的有限轨道点的子群,特别强调最终固定点的子群,$text{EvFix}(\varphi)$:轨道包含一个固定点的点。我们提供了一种算法来计算有限生成的 virtually free 群的内定点子群,并证明了有限轨道的心性受一个可计算常数的约束,这使我们能够解决几个算法问题:决定φ是否是$\text{End}(G)$的有限阶元素,φ是否是非周期性的,$\text{EvFix}(\varphi)$是否是有限生成的,以及$\text{EvFix}(\varphi)$是否是一个正常子群。在$\text{EvFix}(\varphi)$是有限生成的情况下,我们还给出了它的秩的约束和计算生成集的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eventually fixed points of endomorphisms of virtually free groups
We consider the subgroup of points of finite orbit through the action of an endomorphism of a finitely generated virtually free group, with particular emphasis on the subgroup of eventually fixed points, $\text{EvFix}(\varphi)$: points whose orbit contains a fixed point. We provide an algorithm to compute the subgroup of fixed points of an endomorphism of a finitely generated virtually free group and prove that finite orbits have cardinality bounded by a computable constant, which allows us to solve several algorithmic problems: deciding if φ is a finite order element of $\text{End}(G)$, if φ is aperiodic, if $\text{EvFix}(\varphi)$ is finitely generated and if $\text{EvFix}(\varphi)$ is a normal subgroup. In the cases where $\text{EvFix}(\varphi)$ is finitely generated, we also present a bound for its rank and an algorithm to compute a generating set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信