线性还原商奇点的非交换决议

IF 0.6 4区 数学 Q3 MATHEMATICS
Christian Liedtke, Takehiko Yasuda
{"title":"线性还原商奇点的非交换决议","authors":"Christian Liedtke, Takehiko Yasuda","doi":"10.1093/qmath/haae033","DOIUrl":null,"url":null,"abstract":"We prove the existence of non-commutative crepant resolutions (in the sense of Van den Bergh) of quotient singularities by finite and linearly reductive group schemes in positive characteristic. In dimension 2, we relate these to resolutions of singularities provided by G-Hilbert schemes and F-blowups. As an application, we establish and recover results concerning resolutions for toric singularities, as well as canonical, log terminal and F-regular singularities in dimension 2.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-commutative resolutions of linearly reductive quotient singularities\",\"authors\":\"Christian Liedtke, Takehiko Yasuda\",\"doi\":\"10.1093/qmath/haae033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the existence of non-commutative crepant resolutions (in the sense of Van den Bergh) of quotient singularities by finite and linearly reductive group schemes in positive characteristic. In dimension 2, we relate these to resolutions of singularities provided by G-Hilbert schemes and F-blowups. As an application, we establish and recover results concerning resolutions for toric singularities, as well as canonical, log terminal and F-regular singularities in dimension 2.\",\"PeriodicalId\":54522,\"journal\":{\"name\":\"Quarterly Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/qmath/haae033\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/qmath/haae033","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了正特征有限线性还原群方案的商奇点的非交换crepant决议(在Van den Bergh的意义上)的存在。在维度 2 中,我们把它们与 G-Hilbert 方案和 F-blowups 所提供的奇点解析联系起来。作为应用,我们建立并恢复了关于环奇点的解析结果,以及维 2 中的卡农、对数终端和 F 不规则奇点的解析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-commutative resolutions of linearly reductive quotient singularities
We prove the existence of non-commutative crepant resolutions (in the sense of Van den Bergh) of quotient singularities by finite and linearly reductive group schemes in positive characteristic. In dimension 2, we relate these to resolutions of singularities provided by G-Hilbert schemes and F-blowups. As an application, we establish and recover results concerning resolutions for toric singularities, as well as canonical, log terminal and F-regular singularities in dimension 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
36
审稿时长
6-12 weeks
期刊介绍: The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信