万尼尔函数的代数定位暗示非周期性绝缘体中的切尔诺三性

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Jianfeng Lu, Kevin D. Stubbs
{"title":"万尼尔函数的代数定位暗示非周期性绝缘体中的切尔诺三性","authors":"Jianfeng Lu,&nbsp;Kevin D. Stubbs","doi":"10.1007/s00023-024-01444-z","DOIUrl":null,"url":null,"abstract":"<div><p>For gapped periodic systems (insulators), it has been established that the insulator is topologically trivial (i.e., its Chern number is equal to 0) if and only if its Fermi projector admits an orthogonal basis with finite second moment (i.e., all basis elements satisfy <span>\\(\\int |\\varvec{x}|^2 |w(\\varvec{x})|^2 \\,\\text {d}{\\varvec{x}} &lt; \\infty \\)</span>). In this paper, we extend one direction of this result to non-periodic gapped systems. In particular, we show that the existence of an orthogonal basis with slightly more decay (<span>\\(\\int |\\varvec{x}|^{2+\\epsilon } |w(\\varvec{x})|^2 \\,\\text {d}{\\varvec{x}} &lt; \\infty \\)</span> for any <span>\\(\\epsilon &gt; 0\\)</span>) is a sufficient condition to conclude that the Chern marker, the natural generalization of the Chern number, vanishes.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 8","pages":"3911 - 3926"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic Localization of Wannier Functions Implies Chern Triviality in Non-periodic Insulators\",\"authors\":\"Jianfeng Lu,&nbsp;Kevin D. Stubbs\",\"doi\":\"10.1007/s00023-024-01444-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For gapped periodic systems (insulators), it has been established that the insulator is topologically trivial (i.e., its Chern number is equal to 0) if and only if its Fermi projector admits an orthogonal basis with finite second moment (i.e., all basis elements satisfy <span>\\\\(\\\\int |\\\\varvec{x}|^2 |w(\\\\varvec{x})|^2 \\\\,\\\\text {d}{\\\\varvec{x}} &lt; \\\\infty \\\\)</span>). In this paper, we extend one direction of this result to non-periodic gapped systems. In particular, we show that the existence of an orthogonal basis with slightly more decay (<span>\\\\(\\\\int |\\\\varvec{x}|^{2+\\\\epsilon } |w(\\\\varvec{x})|^2 \\\\,\\\\text {d}{\\\\varvec{x}} &lt; \\\\infty \\\\)</span> for any <span>\\\\(\\\\epsilon &gt; 0\\\\)</span>) is a sufficient condition to conclude that the Chern marker, the natural generalization of the Chern number, vanishes.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"25 8\",\"pages\":\"3911 - 3926\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01444-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01444-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于间隙周期系统(绝缘体),已经确定绝缘体在拓扑上是微不足道的(即:其切尔诺数等于 0),当且仅当其费米投影体允许一个具有有限第二矩的正交基(即所有基元满足它的切尔诺数等于 0)(即所有基元都满足 \(int |\varvec{x}|^2 |w(\varvec{x})|^2 \,\text {d}{\varvec{x}} < \infty \))。在本文中,我们将这一结果的一个方向扩展到非周期性间隙系统。特别是,我们证明了存在一个衰减稍多的正交基础(\(\int |\varvec{x}|^{2+\epsilon })。|w(\varvec{x})|^2 \,\text {d}{\varvec{x}} < \infty \) for any \(\epsilon > 0\)) 是得出切恩标记(切恩数的自然广义)消失这一结论的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic Localization of Wannier Functions Implies Chern Triviality in Non-periodic Insulators

For gapped periodic systems (insulators), it has been established that the insulator is topologically trivial (i.e., its Chern number is equal to 0) if and only if its Fermi projector admits an orthogonal basis with finite second moment (i.e., all basis elements satisfy \(\int |\varvec{x}|^2 |w(\varvec{x})|^2 \,\text {d}{\varvec{x}} < \infty \)). In this paper, we extend one direction of this result to non-periodic gapped systems. In particular, we show that the existence of an orthogonal basis with slightly more decay (\(\int |\varvec{x}|^{2+\epsilon } |w(\varvec{x})|^2 \,\text {d}{\varvec{x}} < \infty \) for any \(\epsilon > 0\)) is a sufficient condition to conclude that the Chern marker, the natural generalization of the Chern number, vanishes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信