{"title":"具有快速振荡势的薛定谔算子的负谱","authors":"Larry Read","doi":"10.1007/s00023-024-01457-8","DOIUrl":null,"url":null,"abstract":"<p>For Schrödinger operators with potentials that are asymptotically homogeneous of degree <span>\\(-2\\)</span>, the size of the coupling determines whether it has finite or infinitely many negative eigenvalues. In the latter case, the asymptotic accumulation of these eigenvalues at zero has been determined by Kirsch and Simon. A similar regime occurs for potentials that are not asymptotically monotone but oscillatory. In this case, when the ratio between the amplitude and frequency of oscillation is asymptotically homogeneous of degree <span>\\(-1\\)</span>, the coupling determines the finiteness of the negative spectrum. We present a new proof of this fact by making use of a ground-state representation. As a consequence of this approach, we derive an asymptotic formula analogous to that of Kirsch and Simon.</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"38 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negative Spectrum of Schrödinger Operators with Rapidly Oscillating Potentials\",\"authors\":\"Larry Read\",\"doi\":\"10.1007/s00023-024-01457-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For Schrödinger operators with potentials that are asymptotically homogeneous of degree <span>\\\\(-2\\\\)</span>, the size of the coupling determines whether it has finite or infinitely many negative eigenvalues. In the latter case, the asymptotic accumulation of these eigenvalues at zero has been determined by Kirsch and Simon. A similar regime occurs for potentials that are not asymptotically monotone but oscillatory. In this case, when the ratio between the amplitude and frequency of oscillation is asymptotically homogeneous of degree <span>\\\\(-1\\\\)</span>, the coupling determines the finiteness of the negative spectrum. We present a new proof of this fact by making use of a ground-state representation. As a consequence of this approach, we derive an asymptotic formula analogous to that of Kirsch and Simon.</p>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1007/s00023-024-01457-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01457-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Negative Spectrum of Schrödinger Operators with Rapidly Oscillating Potentials
For Schrödinger operators with potentials that are asymptotically homogeneous of degree \(-2\), the size of the coupling determines whether it has finite or infinitely many negative eigenvalues. In the latter case, the asymptotic accumulation of these eigenvalues at zero has been determined by Kirsch and Simon. A similar regime occurs for potentials that are not asymptotically monotone but oscillatory. In this case, when the ratio between the amplitude and frequency of oscillation is asymptotically homogeneous of degree \(-1\), the coupling determines the finiteness of the negative spectrum. We present a new proof of this fact by making use of a ground-state representation. As a consequence of this approach, we derive an asymptotic formula analogous to that of Kirsch and Simon.
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.