对数薛定谔方程的考希问题再探讨

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Masayuki Hayashi, Tohru Ozawa
{"title":"对数薛定谔方程的考希问题再探讨","authors":"Masayuki Hayashi, Tohru Ozawa","doi":"10.1007/s00023-024-01460-z","DOIUrl":null,"url":null,"abstract":"<p>We revisit the Cauchy problem for the logarithmic Schrödinger equation and construct strong solutions in <span>\\(H^1\\)</span>, the energy space, and the <span>\\(H^2\\)</span>-energy space. The solutions are provided in a constructive way, which does not rely on compactness arguments, that a sequence of approximate solutions forms a Cauchy sequence in a complete function space and then actual convergence is shown to be in a strong sense.</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"76 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cauchy Problem for the Logarithmic Schrödinger Equation Revisited\",\"authors\":\"Masayuki Hayashi, Tohru Ozawa\",\"doi\":\"10.1007/s00023-024-01460-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We revisit the Cauchy problem for the logarithmic Schrödinger equation and construct strong solutions in <span>\\\\(H^1\\\\)</span>, the energy space, and the <span>\\\\(H^2\\\\)</span>-energy space. The solutions are provided in a constructive way, which does not rely on compactness arguments, that a sequence of approximate solutions forms a Cauchy sequence in a complete function space and then actual convergence is shown to be in a strong sense.</p>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1007/s00023-024-01460-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01460-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们重温了对数薛定谔方程的考奇问题,并在\(H^1\)、能量空间和\(H^2\)-能量空间中构造了强解。这些解是以一种不依赖于紧凑性论证的构造性方式提供的,即近似解的序列在一个完整的函数空间中形成一个考希序列,然后证明实际收敛是在强意义上的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Cauchy Problem for the Logarithmic Schrödinger Equation Revisited

We revisit the Cauchy problem for the logarithmic Schrödinger equation and construct strong solutions in \(H^1\), the energy space, and the \(H^2\)-energy space. The solutions are provided in a constructive way, which does not rely on compactness arguments, that a sequence of approximate solutions forms a Cauchy sequence in a complete function space and then actual convergence is shown to be in a strong sense.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信