基于速度插值的能量守恒有限差分方案,适用于使用拼合网格的非稳态流动

IF 1.7 4区 工程技术 Q3 MECHANICS
Hideki Yanaoka
{"title":"基于速度插值的能量守恒有限差分方案,适用于使用拼合网格的非稳态流动","authors":"Hideki Yanaoka","doi":"10.1080/10407790.2024.2360045","DOIUrl":null,"url":null,"abstract":"The collocation method uses the Rhie–Chow scheme to find the cell interface velocity by pressure-weighted interpolation. The accuracy of this interpolation method in unsteady flows has not been ful...","PeriodicalId":49732,"journal":{"name":"Numerical Heat Transfer Part B-Fundamentals","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-conserving finite difference scheme based on velocity interpolation applicable to unsteady flows using collocated grids\",\"authors\":\"Hideki Yanaoka\",\"doi\":\"10.1080/10407790.2024.2360045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The collocation method uses the Rhie–Chow scheme to find the cell interface velocity by pressure-weighted interpolation. The accuracy of this interpolation method in unsteady flows has not been ful...\",\"PeriodicalId\":49732,\"journal\":{\"name\":\"Numerical Heat Transfer Part B-Fundamentals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Heat Transfer Part B-Fundamentals\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10407790.2024.2360045\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Heat Transfer Part B-Fundamentals","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10407790.2024.2360045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

配位法采用 Rhie-Chow 方案,通过压力加权插值法求得单元界面速度。这种插值法在非稳态流动中的精度尚未得到充分验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-conserving finite difference scheme based on velocity interpolation applicable to unsteady flows using collocated grids
The collocation method uses the Rhie–Chow scheme to find the cell interface velocity by pressure-weighted interpolation. The accuracy of this interpolation method in unsteady flows has not been ful...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
18
审稿时长
2.8 months
期刊介绍: Published 12 times per year, Numerical Heat Transfer, Part B: Fundamentals addresses all aspects of the methodology for the numerical solution of problems in heat and mass transfer as well as fluid flow. The journal’s scope also encompasses modeling of complex physical phenomena that serves as a foundation for attaining numerical solutions, and includes numerical or experimental results that support methodology development. All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. The Editor reserves the right to reject without peer review any papers deemed unsuitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信