曲面的波恩卡列数列和曲线的德尔塔不变量的对偶性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
José Ignacio Cogolludo-Agustín, Tamás László, Jorge Martín-Morales, András Némethi
{"title":"曲面的波恩卡列数列和曲线的德尔塔不变量的对偶性","authors":"José Ignacio Cogolludo-Agustín, Tamás László, Jorge Martín-Morales, András Némethi","doi":"10.1007/s40687-024-00457-8","DOIUrl":null,"url":null,"abstract":"<p>In this article we study the delta invariant of reduced curve germs via topological techniques. We describe an explicit connection between the delta invariant of a curve embedded in a rational singularity and the topological Poincaré series of the ambient surface. This connection is established by using another formula expressing the delta invariant as ‘periodic constants’ of the Poincaré series associated with the abstract curve and a ‘twisted’ duality developed for the Poincaré series of the ambient space.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duality for Poincaré series of surfaces and delta invariant of curves\",\"authors\":\"José Ignacio Cogolludo-Agustín, Tamás László, Jorge Martín-Morales, András Némethi\",\"doi\":\"10.1007/s40687-024-00457-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we study the delta invariant of reduced curve germs via topological techniques. We describe an explicit connection between the delta invariant of a curve embedded in a rational singularity and the topological Poincaré series of the ambient surface. This connection is established by using another formula expressing the delta invariant as ‘periodic constants’ of the Poincaré series associated with the abstract curve and a ‘twisted’ duality developed for the Poincaré series of the ambient space.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-024-00457-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00457-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们通过拓扑技术研究了还原曲线胚芽的 delta 不变量。我们描述了嵌入有理奇点的曲线的三角不变量与周围曲面的拓扑波恩卡列数列之间的明确联系。这种联系是通过使用另一个公式将 delta 不变量表示为与抽象曲线相关的波卡列数列的 "周期常数",以及为环境空间的波卡列数列开发的 "扭曲 "对偶性建立起来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duality for Poincaré series of surfaces and delta invariant of curves

In this article we study the delta invariant of reduced curve germs via topological techniques. We describe an explicit connection between the delta invariant of a curve embedded in a rational singularity and the topological Poincaré series of the ambient surface. This connection is established by using another formula expressing the delta invariant as ‘periodic constants’ of the Poincaré series associated with the abstract curve and a ‘twisted’ duality developed for the Poincaré series of the ambient space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信