Harith Ahmad, Aizuddin Ahmad Kamely, Muhamad Zharif Samion, Bilal Nizamani, Siti Aisyah Reduan and Kavintheran Thambiratnam
{"title":"熔融氟化盐辅助合成碳化钛 (Ti2C) MXene 及其在掺铥光纤激光器 2 µm 模式锁定中的应用","authors":"Harith Ahmad, Aizuddin Ahmad Kamely, Muhamad Zharif Samion, Bilal Nizamani, Siti Aisyah Reduan and Kavintheran Thambiratnam","doi":"10.1088/1612-202x/ad552b","DOIUrl":null,"url":null,"abstract":"Titanium carbide (Ti2C), a new two-dimensional material named MXenes, has attracted interest due to its potential applications in numerous fields. Of the many unique characteristics of Ti2C MXene, its nonlinear properties are attractive for optoelectronic applications, specifically for ultrafast laser generation. In this work, a Ti2C MXene was fabricated by etching a MAX phase precursor titanium aluminum carbide (Ti2AlC) using a mixture of lithium fluoride and hydrochloric acid, eliminating the risk of using the harmful hydrofluoric acid. The Ti2C MXene was prepared in solution form and then dropped onto a reduced core diameter of tapered fiber before being used as a saturable absorber (SA). The SA device was inserted into a thulium-doped fiber laser to generate stable mode-locked pulses at a center wavelength of 1951 nm with a pulse width of 1.67 ps. The mode-locked laser was highly stable when tested over time, with peak optical power fluctuations of as little as 0.005 dB measured. The results show that the Ti2C MXene exhibit outstanding performance for ultrafast laser generation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molten fluoride salt-assisted synthesis of titanium carbide (Ti2C) MXene and its application for 2 µm mode-locking in a thulium-doped fiber laser\",\"authors\":\"Harith Ahmad, Aizuddin Ahmad Kamely, Muhamad Zharif Samion, Bilal Nizamani, Siti Aisyah Reduan and Kavintheran Thambiratnam\",\"doi\":\"10.1088/1612-202x/ad552b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Titanium carbide (Ti2C), a new two-dimensional material named MXenes, has attracted interest due to its potential applications in numerous fields. Of the many unique characteristics of Ti2C MXene, its nonlinear properties are attractive for optoelectronic applications, specifically for ultrafast laser generation. In this work, a Ti2C MXene was fabricated by etching a MAX phase precursor titanium aluminum carbide (Ti2AlC) using a mixture of lithium fluoride and hydrochloric acid, eliminating the risk of using the harmful hydrofluoric acid. The Ti2C MXene was prepared in solution form and then dropped onto a reduced core diameter of tapered fiber before being used as a saturable absorber (SA). The SA device was inserted into a thulium-doped fiber laser to generate stable mode-locked pulses at a center wavelength of 1951 nm with a pulse width of 1.67 ps. The mode-locked laser was highly stable when tested over time, with peak optical power fluctuations of as little as 0.005 dB measured. The results show that the Ti2C MXene exhibit outstanding performance for ultrafast laser generation.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad552b\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad552b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Molten fluoride salt-assisted synthesis of titanium carbide (Ti2C) MXene and its application for 2 µm mode-locking in a thulium-doped fiber laser
Titanium carbide (Ti2C), a new two-dimensional material named MXenes, has attracted interest due to its potential applications in numerous fields. Of the many unique characteristics of Ti2C MXene, its nonlinear properties are attractive for optoelectronic applications, specifically for ultrafast laser generation. In this work, a Ti2C MXene was fabricated by etching a MAX phase precursor titanium aluminum carbide (Ti2AlC) using a mixture of lithium fluoride and hydrochloric acid, eliminating the risk of using the harmful hydrofluoric acid. The Ti2C MXene was prepared in solution form and then dropped onto a reduced core diameter of tapered fiber before being used as a saturable absorber (SA). The SA device was inserted into a thulium-doped fiber laser to generate stable mode-locked pulses at a center wavelength of 1951 nm with a pulse width of 1.67 ps. The mode-locked laser was highly stable when tested over time, with peak optical power fluctuations of as little as 0.005 dB measured. The results show that the Ti2C MXene exhibit outstanding performance for ultrafast laser generation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.