Songxiao Liu, Nana Yu, Xiangxiang Ji, Danying Song, Sixing Xi, Zhuqing Zhu, Xiaolei Wang and Liying Lang
{"title":"基于 DWT-SVD 的加密计算机生成全息图水印技术","authors":"Songxiao Liu, Nana Yu, Xiangxiang Ji, Danying Song, Sixing Xi, Zhuqing Zhu, Xiaolei Wang and Liying Lang","doi":"10.1088/1612-202x/ad51e3","DOIUrl":null,"url":null,"abstract":"To improve the security and invisibility of image encryption and concealment, an encrypted computer generated hologram (CGH) watermarking technology based on discrete wavelet transform (DWT) and singular value decomposition (SVD) is proposed. Firstly, the image to be encrypted is encoded and converted into a binary real-valued CGH. The encrypted CGH is then embedded into the host image as a watermark, implementing image encryption and concealment. During decryption, the encrypted CGH watermark is first extracted using the inverse DWT-SVD and the correct keys. Subsequently, the decrypted image is obtained by applying the correct optical key for computational holographic reproduction. The method introduces computational holographic coding and optical keys into the digital watermarking technique and combines the characteristics of DWT and SVD, solving the problem of the high false positive rate of the SVD algorithm. Simulation results show that the security of image encryption and concealment is greatly improved with the introduction of CGH into watermarking technology, especially in terms of robustness to watermark attacks and noise. This method can be applied in the fields of copyright protection and anti-counterfeiting for digital and printed images.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryptographic computer generated hologram watermarking technology based on DWT-SVD\",\"authors\":\"Songxiao Liu, Nana Yu, Xiangxiang Ji, Danying Song, Sixing Xi, Zhuqing Zhu, Xiaolei Wang and Liying Lang\",\"doi\":\"10.1088/1612-202x/ad51e3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the security and invisibility of image encryption and concealment, an encrypted computer generated hologram (CGH) watermarking technology based on discrete wavelet transform (DWT) and singular value decomposition (SVD) is proposed. Firstly, the image to be encrypted is encoded and converted into a binary real-valued CGH. The encrypted CGH is then embedded into the host image as a watermark, implementing image encryption and concealment. During decryption, the encrypted CGH watermark is first extracted using the inverse DWT-SVD and the correct keys. Subsequently, the decrypted image is obtained by applying the correct optical key for computational holographic reproduction. The method introduces computational holographic coding and optical keys into the digital watermarking technique and combines the characteristics of DWT and SVD, solving the problem of the high false positive rate of the SVD algorithm. Simulation results show that the security of image encryption and concealment is greatly improved with the introduction of CGH into watermarking technology, especially in terms of robustness to watermark attacks and noise. This method can be applied in the fields of copyright protection and anti-counterfeiting for digital and printed images.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad51e3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad51e3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cryptographic computer generated hologram watermarking technology based on DWT-SVD
To improve the security and invisibility of image encryption and concealment, an encrypted computer generated hologram (CGH) watermarking technology based on discrete wavelet transform (DWT) and singular value decomposition (SVD) is proposed. Firstly, the image to be encrypted is encoded and converted into a binary real-valued CGH. The encrypted CGH is then embedded into the host image as a watermark, implementing image encryption and concealment. During decryption, the encrypted CGH watermark is first extracted using the inverse DWT-SVD and the correct keys. Subsequently, the decrypted image is obtained by applying the correct optical key for computational holographic reproduction. The method introduces computational holographic coding and optical keys into the digital watermarking technique and combines the characteristics of DWT and SVD, solving the problem of the high false positive rate of the SVD algorithm. Simulation results show that the security of image encryption and concealment is greatly improved with the introduction of CGH into watermarking technology, especially in terms of robustness to watermark attacks and noise. This method can be applied in the fields of copyright protection and anti-counterfeiting for digital and printed images.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.