{"title":"恒级磁场的半经典伯克霍夫正则表达式","authors":"Léo Morin","doi":"10.2140/apde.2024.17.1593","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with classical and semiclassical nonvanishing magnetic fields on a Riemannian manifold of arbitrary dimension. We assume that the magnetic field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>B</mi>\n<mo>=</mo>\n<mi>d</mi><mi>A</mi></math> has constant rank and admits a discrete well. On the classical part, we exhibit a harmonic oscillator for the Hamiltonian <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>H</mi>\n<mo>=</mo>\n<mo>|</mo><mi>p</mi>\n<mo>−</mo>\n<mi>A</mi><mo stretchy=\"false\">(</mo><mi>q</mi><mo stretchy=\"false\">)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></math> near the zero-energy surface: the cyclotron motion. On the semiclassical part, we describe the semiexcited spectrum of the magnetic Laplacian <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℒ</mi></mrow><mrow><mi>ℏ</mi></mrow></msub>\n<mo>=</mo> <msup><mrow><mo stretchy=\"false\">(</mo><mi>i</mi><mi>ℏ</mi><mi>d</mi>\n<mo>+</mo>\n<mi>A</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mo>∗</mo></mrow></msup><mo stretchy=\"false\">(</mo><mi>i</mi><mi>ℏ</mi><mi>d</mi>\n<mo>+</mo>\n<mi>A</mi><mo stretchy=\"false\">)</mo></math>. We construct a semiclassical Birkhoff normal form for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"bold-script\">ℒ</mi></mrow><mrow><mi>ℏ</mi></mrow></msub></math> and deduce new asymptotic expansions of the smallest eigenvalues in powers of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℏ</mi></mrow><mrow><mn>1</mn><mo>∕</mo><mn>2</mn></mrow></msup></math> in the limit <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℏ</mi>\n<mo>→</mo> <mn>0</mn></math>. In particular we see the influence of the kernel of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>B</mi></math> on the spectrum: it raises the energies at order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℏ</mi></mrow><mrow><mn>3</mn><mo>∕</mo><mn>2</mn></mrow></msup></math>. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semiclassical Birkhoff normal form for constant-rank magnetic fields\",\"authors\":\"Léo Morin\",\"doi\":\"10.2140/apde.2024.17.1593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper deals with classical and semiclassical nonvanishing magnetic fields on a Riemannian manifold of arbitrary dimension. We assume that the magnetic field <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>B</mi>\\n<mo>=</mo>\\n<mi>d</mi><mi>A</mi></math> has constant rank and admits a discrete well. On the classical part, we exhibit a harmonic oscillator for the Hamiltonian <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>H</mi>\\n<mo>=</mo>\\n<mo>|</mo><mi>p</mi>\\n<mo>−</mo>\\n<mi>A</mi><mo stretchy=\\\"false\\\">(</mo><mi>q</mi><mo stretchy=\\\"false\\\">)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></math> near the zero-energy surface: the cyclotron motion. On the semiclassical part, we describe the semiexcited spectrum of the magnetic Laplacian <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">ℒ</mi></mrow><mrow><mi>ℏ</mi></mrow></msub>\\n<mo>=</mo> <msup><mrow><mo stretchy=\\\"false\\\">(</mo><mi>i</mi><mi>ℏ</mi><mi>d</mi>\\n<mo>+</mo>\\n<mi>A</mi><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mo>∗</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>i</mi><mi>ℏ</mi><mi>d</mi>\\n<mo>+</mo>\\n<mi>A</mi><mo stretchy=\\\"false\\\">)</mo></math>. We construct a semiclassical Birkhoff normal form for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"bold-script\\\">ℒ</mi></mrow><mrow><mi>ℏ</mi></mrow></msub></math> and deduce new asymptotic expansions of the smallest eigenvalues in powers of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>ℏ</mi></mrow><mrow><mn>1</mn><mo>∕</mo><mn>2</mn></mrow></msup></math> in the limit <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ℏ</mi>\\n<mo>→</mo> <mn>0</mn></math>. In particular we see the influence of the kernel of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>B</mi></math> on the spectrum: it raises the energies at order <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>ℏ</mi></mrow><mrow><mn>3</mn><mo>∕</mo><mn>2</mn></mrow></msup></math>. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1593\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1593","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A semiclassical Birkhoff normal form for constant-rank magnetic fields
This paper deals with classical and semiclassical nonvanishing magnetic fields on a Riemannian manifold of arbitrary dimension. We assume that the magnetic field has constant rank and admits a discrete well. On the classical part, we exhibit a harmonic oscillator for the Hamiltonian near the zero-energy surface: the cyclotron motion. On the semiclassical part, we describe the semiexcited spectrum of the magnetic Laplacian . We construct a semiclassical Birkhoff normal form for and deduce new asymptotic expansions of the smallest eigenvalues in powers of in the limit . In particular we see the influence of the kernel of on the spectrum: it raises the energies at order .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.