积分域上的马西亚斯拓扑学

Jhixon Macías
{"title":"积分域上的马西亚斯拓扑学","authors":"Jhixon Macías","doi":"arxiv-2406.04623","DOIUrl":null,"url":null,"abstract":"In this manuscript, a recent topology on the positive integers, generated by\nthe collection of relatively prime positive integers, is generalized over\nintegral domains. Some of its topological properties are studied. Properties of\nthis topology on infinite principal ideal domains that are not fields are also\nexplored, and a new topological proof of the infinitude of prime elements is\nobtained (assuming the set of units is finite), different from those presented\nin the style of H. Furstenberg. Finally, some problems are proposed.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Macias topology on integral domains\",\"authors\":\"Jhixon Macías\",\"doi\":\"arxiv-2406.04623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, a recent topology on the positive integers, generated by\\nthe collection of relatively prime positive integers, is generalized over\\nintegral domains. Some of its topological properties are studied. Properties of\\nthis topology on infinite principal ideal domains that are not fields are also\\nexplored, and a new topological proof of the infinitude of prime elements is\\nobtained (assuming the set of units is finite), different from those presented\\nin the style of H. Furstenberg. Finally, some problems are proposed.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.04623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.04623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本手稿中,由相对素正整数集合生成的正整数上的最新拓扑学被推广到积分域上。研究了它的一些拓扑性质。此外,还探讨了这种拓扑学在非域的无限主理想域上的性质,并获得了素元无穷大的新拓扑学证明(假设单位集是有限的),这与 H. Furstenberg 风格的证明不同。最后,还提出了一些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Macias topology on integral domains
In this manuscript, a recent topology on the positive integers, generated by the collection of relatively prime positive integers, is generalized over integral domains. Some of its topological properties are studied. Properties of this topology on infinite principal ideal domains that are not fields are also explored, and a new topological proof of the infinitude of prime elements is obtained (assuming the set of units is finite), different from those presented in the style of H. Furstenberg. Finally, some problems are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信