连续函数的棋盘和水平集

Michał Dybowski, Przemysław Górka
{"title":"连续函数的棋盘和水平集","authors":"Michał Dybowski, Przemysław Górka","doi":"arxiv-2406.13774","DOIUrl":null,"url":null,"abstract":"We show the following result: Let $f \\colon I^n \\to \\mathbb{R}^{n-1}$ be a\ncontinuous function. Then, there exist $p \\in \\mathbb{R}^{n-1}$ and compact\nsubset $S \\subset f^{-1}\\left[\\left\\{p\\right\\}\\right]$ which connects some\nopposite faces of the $n$-dimensional unit cube $I^n$. We give an example that\nshows it cannot be generalized to path-connected sets. We also provide a\ndiscrete version of this result which is inspired by the $n$-dimensional\nSteinhaus Chessboard Theorem. Additionally, we show that the latter one and the\nBrouwer Fixed Point Theorem are simple consequences of the main result.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chessboard and level sets of continuous functions\",\"authors\":\"Michał Dybowski, Przemysław Górka\",\"doi\":\"arxiv-2406.13774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the following result: Let $f \\\\colon I^n \\\\to \\\\mathbb{R}^{n-1}$ be a\\ncontinuous function. Then, there exist $p \\\\in \\\\mathbb{R}^{n-1}$ and compact\\nsubset $S \\\\subset f^{-1}\\\\left[\\\\left\\\\{p\\\\right\\\\}\\\\right]$ which connects some\\nopposite faces of the $n$-dimensional unit cube $I^n$. We give an example that\\nshows it cannot be generalized to path-connected sets. We also provide a\\ndiscrete version of this result which is inspired by the $n$-dimensional\\nSteinhaus Chessboard Theorem. Additionally, we show that the latter one and the\\nBrouwer Fixed Point Theorem are simple consequences of the main result.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.13774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.13774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们展示以下结果:假设 $f 是一个连续函数。那么,在 \mathbb{R}^{n-1}$ 中存在 $p \ 和紧凑子集 $S \子集 f^{-1}\left[\left\{p\right}\right]$ ,它连接了 $n$ 维单位立方体 $I^n$ 的一些对立面。我们举例说明它不能推广到路径连接集。我们还受 $n$ 维斯坦豪斯棋盘定理的启发,提供了这一结果的离散版本。此外,我们还证明了后一定理和布劳威尔定点定理是主结果的简单后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chessboard and level sets of continuous functions
We show the following result: Let $f \colon I^n \to \mathbb{R}^{n-1}$ be a continuous function. Then, there exist $p \in \mathbb{R}^{n-1}$ and compact subset $S \subset f^{-1}\left[\left\{p\right\}\right]$ which connects some opposite faces of the $n$-dimensional unit cube $I^n$. We give an example that shows it cannot be generalized to path-connected sets. We also provide a discrete version of this result which is inspired by the $n$-dimensional Steinhaus Chessboard Theorem. Additionally, we show that the latter one and the Brouwer Fixed Point Theorem are simple consequences of the main result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信