高维可数紧凑性与超滤波器

Cesar Corral, Pourya Memarpanahi, Paul Szeptycki
{"title":"高维可数紧凑性与超滤波器","authors":"Cesar Corral, Pourya Memarpanahi, Paul Szeptycki","doi":"arxiv-2406.17217","DOIUrl":null,"url":null,"abstract":"We define several notions of a limit point on sequences with domain a barrier\nin $[\\omega]^{<\\omega}$ focusing on the two dimensional case $[\\omega]^2$. By\nexploring some natural candidates, we show that countable compactness has a\nnumber of generalizations in terms of limits of high dimensional sequences and\ndefine a particular notion of $\\alpha$-countable compactness for\n$\\alpha\\leq\\omega_1$. We then focus on dimension 2 and compare 2-countable\ncompactness with notions previously studied in the literature. We present a\nnumber of counterexamples showing that these classes are different. In\nparticular assuming the existence of a Ramsey ultrafilter, a subspace of\n$\\beta\\omega$ which is doubly countably compact whose square is not countably\ncompact, answering a question of T. Banakh, S. Dimitrova and O. Gutik. The\nanalysis of this construction leads to some possibly new types of ultrafilters\nrelated to discrete, P-points and Ramsey ultrafilters.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High dimensional countable compactness and ultrafilters\",\"authors\":\"Cesar Corral, Pourya Memarpanahi, Paul Szeptycki\",\"doi\":\"arxiv-2406.17217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define several notions of a limit point on sequences with domain a barrier\\nin $[\\\\omega]^{<\\\\omega}$ focusing on the two dimensional case $[\\\\omega]^2$. By\\nexploring some natural candidates, we show that countable compactness has a\\nnumber of generalizations in terms of limits of high dimensional sequences and\\ndefine a particular notion of $\\\\alpha$-countable compactness for\\n$\\\\alpha\\\\leq\\\\omega_1$. We then focus on dimension 2 and compare 2-countable\\ncompactness with notions previously studied in the literature. We present a\\nnumber of counterexamples showing that these classes are different. In\\nparticular assuming the existence of a Ramsey ultrafilter, a subspace of\\n$\\\\beta\\\\omega$ which is doubly countably compact whose square is not countably\\ncompact, answering a question of T. Banakh, S. Dimitrova and O. Gutik. The\\nanalysis of this construction leads to some possibly new types of ultrafilters\\nrelated to discrete, P-points and Ramsey ultrafilters.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.17217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.17217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了几个关于在$[\omega]^{<\omega}$中具有域障碍的序列的极限点的概念,重点是二维情况下的$[\omega]^2$。通过对一些自然候选数的探索,我们证明了可数紧凑性在高维序列的极限方面有许多概括,并为 $\alpha\leq\omega_1$ 定义了 $\alpha$-countable compactness 的特殊概念。然后,我们聚焦于维度 2,并将 2-countablecompactness 与之前文献中研究的概念进行比较。我们提出了一些反例,表明这些类是不同的。特别是假设存在一个拉姆齐超滤波器,它是$\beta\omega$的一个双可数紧凑的子空间,其平方不是可数紧凑的,这回答了T. Banakh、S. Dimitrova和O. Gutik的一个问题。对这一构造的分析引出了一些可能与离散、P 点和拉姆齐超滤波器有关的新型超滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High dimensional countable compactness and ultrafilters
We define several notions of a limit point on sequences with domain a barrier in $[\omega]^{<\omega}$ focusing on the two dimensional case $[\omega]^2$. By exploring some natural candidates, we show that countable compactness has a number of generalizations in terms of limits of high dimensional sequences and define a particular notion of $\alpha$-countable compactness for $\alpha\leq\omega_1$. We then focus on dimension 2 and compare 2-countable compactness with notions previously studied in the literature. We present a number of counterexamples showing that these classes are different. In particular assuming the existence of a Ramsey ultrafilter, a subspace of $\beta\omega$ which is doubly countably compact whose square is not countably compact, answering a question of T. Banakh, S. Dimitrova and O. Gutik. The analysis of this construction leads to some possibly new types of ultrafilters related to discrete, P-points and Ramsey ultrafilters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信