单调夹杂物前向后分裂法的修正

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Van Dung Nguyen
{"title":"单调夹杂物前向后分裂法的修正","authors":"Van Dung Nguyen","doi":"10.1007/s11590-024-02128-7","DOIUrl":null,"url":null,"abstract":"<p>In this work, we propose a new splitting method for monotone inclusion problems with three operators in real Hilbert spaces, in which one is maximal monotone, one is monotone-Lipschitz and one is cocoercive. By specializing in two operator inclusion, we recover the forward–backward and the generalization of the reflected-forward–backward splitting methods as particular cases. The weak convergence of the algorithm under standard assumptions is established. The linear convergence rate of the proposed method is obtained under an additional condition like the strong monotonicity. We also give some theoretical comparisons to demonstrate the efficiency of the proposed method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modification of the forward–backward splitting method for monotone inclusions\",\"authors\":\"Van Dung Nguyen\",\"doi\":\"10.1007/s11590-024-02128-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we propose a new splitting method for monotone inclusion problems with three operators in real Hilbert spaces, in which one is maximal monotone, one is monotone-Lipschitz and one is cocoercive. By specializing in two operator inclusion, we recover the forward–backward and the generalization of the reflected-forward–backward splitting methods as particular cases. The weak convergence of the algorithm under standard assumptions is established. The linear convergence rate of the proposed method is obtained under an additional condition like the strong monotonicity. We also give some theoretical comparisons to demonstrate the efficiency of the proposed method.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-024-02128-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02128-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种新的拆分方法,用于实希尔伯特空间中三个算子的单调包含问题,其中一个算子是最大单调的,一个是单调-利普希兹的,一个是可塞的。通过对两个算子包含的特殊化,我们恢复了作为特殊情况的前向后向和广义反射前向后向分裂方法。在标准假设条件下,算法的弱收敛性得以确定。在强单调性等附加条件下,我们得到了所提方法的线性收敛率。我们还给出了一些理论比较,以证明所提方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A modification of the forward–backward splitting method for monotone inclusions

A modification of the forward–backward splitting method for monotone inclusions

In this work, we propose a new splitting method for monotone inclusion problems with three operators in real Hilbert spaces, in which one is maximal monotone, one is monotone-Lipschitz and one is cocoercive. By specializing in two operator inclusion, we recover the forward–backward and the generalization of the reflected-forward–backward splitting methods as particular cases. The weak convergence of the algorithm under standard assumptions is established. The linear convergence rate of the proposed method is obtained under an additional condition like the strong monotonicity. We also give some theoretical comparisons to demonstrate the efficiency of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信