{"title":"凸四边形上波利克重球的加速拉普诺夫函数","authors":"Antonio Orvieto","doi":"10.1007/s11590-024-02119-8","DOIUrl":null,"url":null,"abstract":"<p>In 1964, Polyak showed that the Heavy-ball method, the simplest momentum technique, accelerates convergence of strongly-convex problems in the vicinity of the solution. While Nesterov later developed a globally accelerated version, Polyak’s original algorithm remains simpler and more widely used in applications such as deep learning. Despite this popularity, the question of whether Heavy-ball is also globally accelerated or not has not been fully answered yet, and no convincing counterexample has been provided. This is largely due to the difficulty in finding an effective Lyapunov function: indeed, most proofs of Heavy-ball acceleration in the strongly-convex quadratic setting rely on eigenvalue arguments. Our work adopts a different approach: studying momentum through the lens of quadratic invariants of simple harmonic oscillators. By utilizing the modified Hamiltonian of Störmer-Verlet integrators, we are able to construct a Lyapunov function that demonstrates an <span>\\(O(1/k^2)\\)</span> rate for Heavy-ball in the case of convex quadratic problems. Our novel proof technique, though restricted to linear regression, is found to work well empirically also on non-quadratic convex problems, and thus provides insights on the structure of Lyapunov functions to be used in the general convex case. As such, our paper makes a promising first step towards potentially proving the acceleration of Polyak’s momentum method and we hope it inspires further research around this question.</p>","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"24 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An accelerated lyapunov function for Polyak’s Heavy-ball on convex quadratics\",\"authors\":\"Antonio Orvieto\",\"doi\":\"10.1007/s11590-024-02119-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 1964, Polyak showed that the Heavy-ball method, the simplest momentum technique, accelerates convergence of strongly-convex problems in the vicinity of the solution. While Nesterov later developed a globally accelerated version, Polyak’s original algorithm remains simpler and more widely used in applications such as deep learning. Despite this popularity, the question of whether Heavy-ball is also globally accelerated or not has not been fully answered yet, and no convincing counterexample has been provided. This is largely due to the difficulty in finding an effective Lyapunov function: indeed, most proofs of Heavy-ball acceleration in the strongly-convex quadratic setting rely on eigenvalue arguments. Our work adopts a different approach: studying momentum through the lens of quadratic invariants of simple harmonic oscillators. By utilizing the modified Hamiltonian of Störmer-Verlet integrators, we are able to construct a Lyapunov function that demonstrates an <span>\\\\(O(1/k^2)\\\\)</span> rate for Heavy-ball in the case of convex quadratic problems. Our novel proof technique, though restricted to linear regression, is found to work well empirically also on non-quadratic convex problems, and thus provides insights on the structure of Lyapunov functions to be used in the general convex case. As such, our paper makes a promising first step towards potentially proving the acceleration of Polyak’s momentum method and we hope it inspires further research around this question.</p>\",\"PeriodicalId\":49720,\"journal\":{\"name\":\"Optimization Letters\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-024-02119-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02119-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An accelerated lyapunov function for Polyak’s Heavy-ball on convex quadratics
In 1964, Polyak showed that the Heavy-ball method, the simplest momentum technique, accelerates convergence of strongly-convex problems in the vicinity of the solution. While Nesterov later developed a globally accelerated version, Polyak’s original algorithm remains simpler and more widely used in applications such as deep learning. Despite this popularity, the question of whether Heavy-ball is also globally accelerated or not has not been fully answered yet, and no convincing counterexample has been provided. This is largely due to the difficulty in finding an effective Lyapunov function: indeed, most proofs of Heavy-ball acceleration in the strongly-convex quadratic setting rely on eigenvalue arguments. Our work adopts a different approach: studying momentum through the lens of quadratic invariants of simple harmonic oscillators. By utilizing the modified Hamiltonian of Störmer-Verlet integrators, we are able to construct a Lyapunov function that demonstrates an \(O(1/k^2)\) rate for Heavy-ball in the case of convex quadratic problems. Our novel proof technique, though restricted to linear regression, is found to work well empirically also on non-quadratic convex problems, and thus provides insights on the structure of Lyapunov functions to be used in the general convex case. As such, our paper makes a promising first step towards potentially proving the acceleration of Polyak’s momentum method and we hope it inspires further research around this question.
期刊介绍:
Optimization Letters is an international journal covering all aspects of optimization, including theory, algorithms, computational studies, and applications, and providing an outlet for rapid publication of short communications in the field. Originality, significance, quality and clarity are the essential criteria for choosing the material to be published.
Optimization Letters has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time one of the most striking trends in optimization is the constantly increasing interdisciplinary nature of the field.
Optimization Letters aims to communicate in a timely fashion all recent developments in optimization with concise short articles (limited to a total of ten journal pages). Such concise articles will be easily accessible by readers working in any aspects of optimization and wish to be informed of recent developments.