{"title":"通过 Stein-Chen 方法研究随机图极值度分布的说明","authors":"Yaakov Malinovsky","doi":"10.1007/s11009-024-10091-0","DOIUrl":null,"url":null,"abstract":"<p>We offer an alternative proof, using the Stein-Chen method, of Bollobás’ theorem concerning the distribution of the extreme degrees of a random graph. Our proof also provides a rate of convergence of the extreme degree to its asymptotic distribution. The same method also applies in a more general setting where the probability of every pair of vertices being connected by edges depends on the number of vertices.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"78 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on the Distribution of the Extreme Degrees of a Random Graph via the Stein-Chen Method\",\"authors\":\"Yaakov Malinovsky\",\"doi\":\"10.1007/s11009-024-10091-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We offer an alternative proof, using the Stein-Chen method, of Bollobás’ theorem concerning the distribution of the extreme degrees of a random graph. Our proof also provides a rate of convergence of the extreme degree to its asymptotic distribution. The same method also applies in a more general setting where the probability of every pair of vertices being connected by edges depends on the number of vertices.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-024-10091-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10091-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Note on the Distribution of the Extreme Degrees of a Random Graph via the Stein-Chen Method
We offer an alternative proof, using the Stein-Chen method, of Bollobás’ theorem concerning the distribution of the extreme degrees of a random graph. Our proof also provides a rate of convergence of the extreme degree to its asymptotic distribution. The same method also applies in a more general setting where the probability of every pair of vertices being connected by edges depends on the number of vertices.
期刊介绍:
Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics.
The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests:
-Algorithms-
Approximations-
Asymptotic Approximations & Expansions-
Combinatorial & Geometric Probability-
Communication Networks-
Extreme Value Theory-
Finance-
Image Analysis-
Inequalities-
Information Theory-
Mathematical Physics-
Molecular Biology-
Monte Carlo Methods-
Order Statistics-
Queuing Theory-
Reliability Theory-
Stochastic Processes