{"title":"离散和连续长程渗流中的最长边缘","authors":"Arnaud Rousselle, Ercan Sönmez","doi":"10.1007/s10687-024-00488-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the random connection model in which an edge between two Poisson points at distance <i>r</i> is present with probability <i>g</i>(<i>r</i>). We conduct an extreme value analysis on this model, namely by investigating the longest edge with at least one endpoint within some finite observation window, as the volume of this window tends to infinity. We show that the length of the latter, after normalizing by some appropriate centering and scaling sequences, asymptotically behaves like one of each of the three extreme value distributions, depending on choices of the probability <i>g</i>(<i>r</i>). We prove our results by giving a formal construction of the model by means of a marked Poisson point process and a Poisson coupling argument adapted to this construction. In addition, we study a discrete variant of the model. We obtain parameter regimes with varying behavior in our findings and an unexpected singularity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The longest edge in discrete and continuous long-range percolation\",\"authors\":\"Arnaud Rousselle, Ercan Sönmez\",\"doi\":\"10.1007/s10687-024-00488-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the random connection model in which an edge between two Poisson points at distance <i>r</i> is present with probability <i>g</i>(<i>r</i>). We conduct an extreme value analysis on this model, namely by investigating the longest edge with at least one endpoint within some finite observation window, as the volume of this window tends to infinity. We show that the length of the latter, after normalizing by some appropriate centering and scaling sequences, asymptotically behaves like one of each of the three extreme value distributions, depending on choices of the probability <i>g</i>(<i>r</i>). We prove our results by giving a formal construction of the model by means of a marked Poisson point process and a Poisson coupling argument adapted to this construction. In addition, we study a discrete variant of the model. We obtain parameter regimes with varying behavior in our findings and an unexpected singularity.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10687-024-00488-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10687-024-00488-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑了随机连接模型,在该模型中,距离为 r 的两个泊松点之间存在一条边的概率为 g(r)。我们对这一模型进行了极值分析,即研究在某个有限观测窗口内至少有一个端点的最长边,当窗口的容积趋于无穷大时。我们证明,后者的长度在通过一些适当的居中和缩放序列进行归一化后,渐近地表现为三种极值分布中的一种,这取决于概率 g(r) 的选择。我们通过有标记的泊松点过程给出了模型的正式构造,并给出了与此构造相适应的泊松耦合论证,从而证明了我们的结果。此外,我们还研究了该模型的离散变体。我们在研究结果中获得了行为各异的参数区以及一个意想不到的奇点。
The longest edge in discrete and continuous long-range percolation
We consider the random connection model in which an edge between two Poisson points at distance r is present with probability g(r). We conduct an extreme value analysis on this model, namely by investigating the longest edge with at least one endpoint within some finite observation window, as the volume of this window tends to infinity. We show that the length of the latter, after normalizing by some appropriate centering and scaling sequences, asymptotically behaves like one of each of the three extreme value distributions, depending on choices of the probability g(r). We prove our results by giving a formal construction of the model by means of a marked Poisson point process and a Poisson coupling argument adapted to this construction. In addition, we study a discrete variant of the model. We obtain parameter regimes with varying behavior in our findings and an unexpected singularity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.