Said Obakrim, Pierre Ailliot, Valérie Monbet, Nicolas Raillard
{"title":"带有空间协变量的广义岭回归 EM 算法","authors":"Said Obakrim, Pierre Ailliot, Valérie Monbet, Nicolas Raillard","doi":"10.1002/env.2871","DOIUrl":null,"url":null,"abstract":"<p>The generalized Ridge penalty is a powerful tool for dealing with multicollinearity and high-dimensionality in regression problems. The generalized Ridge regression can be derived as the mean of a posterior distribution with a Normal prior and a given covariance matrix. The covariance matrix controls the structure of the coefficients, which depends on the particular application. For example, it is appropriate to assume that the coefficients have a spatial structure when the covariates are spatially correlated. This study proposes an Expectation-Maximization algorithm for estimating generalized Ridge parameters whose covariance structure depends on specific parameters. We focus on three cases: diagonal (when the covariance matrix is diagonal with constant elements), Matérn, and conditional autoregressive covariances. A simulation study is conducted to evaluate the performance of the proposed method, and then the method is applied to predict ocean wave heights using wind conditions.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EM algorithm for generalized Ridge regression with spatial covariates\",\"authors\":\"Said Obakrim, Pierre Ailliot, Valérie Monbet, Nicolas Raillard\",\"doi\":\"10.1002/env.2871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The generalized Ridge penalty is a powerful tool for dealing with multicollinearity and high-dimensionality in regression problems. The generalized Ridge regression can be derived as the mean of a posterior distribution with a Normal prior and a given covariance matrix. The covariance matrix controls the structure of the coefficients, which depends on the particular application. For example, it is appropriate to assume that the coefficients have a spatial structure when the covariates are spatially correlated. This study proposes an Expectation-Maximization algorithm for estimating generalized Ridge parameters whose covariance structure depends on specific parameters. We focus on three cases: diagonal (when the covariance matrix is diagonal with constant elements), Matérn, and conditional autoregressive covariances. A simulation study is conducted to evaluate the performance of the proposed method, and then the method is applied to predict ocean wave heights using wind conditions.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 6\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2871\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2871","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
EM algorithm for generalized Ridge regression with spatial covariates
The generalized Ridge penalty is a powerful tool for dealing with multicollinearity and high-dimensionality in regression problems. The generalized Ridge regression can be derived as the mean of a posterior distribution with a Normal prior and a given covariance matrix. The covariance matrix controls the structure of the coefficients, which depends on the particular application. For example, it is appropriate to assume that the coefficients have a spatial structure when the covariates are spatially correlated. This study proposes an Expectation-Maximization algorithm for estimating generalized Ridge parameters whose covariance structure depends on specific parameters. We focus on three cases: diagonal (when the covariance matrix is diagonal with constant elements), Matérn, and conditional autoregressive covariances. A simulation study is conducted to evaluate the performance of the proposed method, and then the method is applied to predict ocean wave heights using wind conditions.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.