用于分析冰川生态系统的相似性网络聚合法

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2024-06-26 DOI:10.1002/env.2875
Roberto Ambrosini, Federica Baccini, Lucio Barabesi
{"title":"用于分析冰川生态系统的相似性网络聚合法","authors":"Roberto Ambrosini, Federica Baccini, Lucio Barabesi","doi":"10.1002/env.2875","DOIUrl":null,"url":null,"abstract":"The synthesis of information deriving from complex networks is a topic receiving increasing relevance in ecology and environmental sciences. In particular, the aggregation of multilayer networks, that is, network structures formed by multiple interacting networks (the layers), constitutes a fast‐growing field. In several environmental applications, the layers of a multilayer network are modeled as a collection of similarity matrices describing how similar pairs of biological entities are, based on different types of features (e.g., biological traits). The present paper first discusses two main techniques for combining the multi‐layered information into a single network (the so‐called monoplex), that is, similarity network fusion and similarity matrix average (SMA). Then, the effectiveness of the two methods is tested on a real‐world dataset of the relative abundance of microbial species in the ecosystems of nine glaciers (four glaciers in the Alps and five in the Andes). A preliminary clustering analysis on the monoplexes obtained with different methods shows the emergence of a tightly connected community formed by species that are typical of cryoconite holes worldwide. Moreover, the weights assigned to different layers by the SMA algorithm suggest that two large South American glaciers (Exploradores and Perito Moreno) are structurally different from the smaller glaciers in both Europe and South America. Overall, these results highlight the importance of integration methods in the discovery of the underlying organizational structure of biological entities in multilayer ecological networks.","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"14 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Similarity network aggregation for the analysis of glacier ecosystems\",\"authors\":\"Roberto Ambrosini, Federica Baccini, Lucio Barabesi\",\"doi\":\"10.1002/env.2875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The synthesis of information deriving from complex networks is a topic receiving increasing relevance in ecology and environmental sciences. In particular, the aggregation of multilayer networks, that is, network structures formed by multiple interacting networks (the layers), constitutes a fast‐growing field. In several environmental applications, the layers of a multilayer network are modeled as a collection of similarity matrices describing how similar pairs of biological entities are, based on different types of features (e.g., biological traits). The present paper first discusses two main techniques for combining the multi‐layered information into a single network (the so‐called monoplex), that is, similarity network fusion and similarity matrix average (SMA). Then, the effectiveness of the two methods is tested on a real‐world dataset of the relative abundance of microbial species in the ecosystems of nine glaciers (four glaciers in the Alps and five in the Andes). A preliminary clustering analysis on the monoplexes obtained with different methods shows the emergence of a tightly connected community formed by species that are typical of cryoconite holes worldwide. Moreover, the weights assigned to different layers by the SMA algorithm suggest that two large South American glaciers (Exploradores and Perito Moreno) are structurally different from the smaller glaciers in both Europe and South America. Overall, these results highlight the importance of integration methods in the discovery of the underlying organizational structure of biological entities in multilayer ecological networks.\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/env.2875\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/env.2875","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对来自复杂网络的信息进行综合是生态学和环境科学中一个日益重要的课题。特别是多层网络的聚合,即由多个相互作用的网络(层)形成的网络结构,是一个发展迅速的领域。在一些环境应用中,多层网络的层被建模为基于不同类型特征(如生物特征)的相似性矩阵集合,描述生物实体对的相似程度。本文首先讨论了将多层信息组合成单一网络(即所谓的单层网络)的两种主要技术,即相似性网络融合和相似性矩阵平均(SMA)。然后,在九座冰川(四座位于阿尔卑斯山,五座位于安第斯山脉)生态系统中微生物物种相对丰度的实际数据集上测试了这两种方法的有效性。对使用不同方法获得的单层冰川进行的初步聚类分析显示,出现了一个由全球冰川洞典型物种组成的紧密相连的群落。此外,SMA 算法分配给不同层的权重表明,南美洲的两个大型冰川(Exploradores 和 Perito Moreno)在结构上与欧洲和南美洲的小型冰川不同。总之,这些结果凸显了整合方法在发现多层生态网络中生物实体的基本组织结构方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity network aggregation for the analysis of glacier ecosystems
The synthesis of information deriving from complex networks is a topic receiving increasing relevance in ecology and environmental sciences. In particular, the aggregation of multilayer networks, that is, network structures formed by multiple interacting networks (the layers), constitutes a fast‐growing field. In several environmental applications, the layers of a multilayer network are modeled as a collection of similarity matrices describing how similar pairs of biological entities are, based on different types of features (e.g., biological traits). The present paper first discusses two main techniques for combining the multi‐layered information into a single network (the so‐called monoplex), that is, similarity network fusion and similarity matrix average (SMA). Then, the effectiveness of the two methods is tested on a real‐world dataset of the relative abundance of microbial species in the ecosystems of nine glaciers (four glaciers in the Alps and five in the Andes). A preliminary clustering analysis on the monoplexes obtained with different methods shows the emergence of a tightly connected community formed by species that are typical of cryoconite holes worldwide. Moreover, the weights assigned to different layers by the SMA algorithm suggest that two large South American glaciers (Exploradores and Perito Moreno) are structurally different from the smaller glaciers in both Europe and South America. Overall, these results highlight the importance of integration methods in the discovery of the underlying organizational structure of biological entities in multilayer ecological networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信