具有频率合成维度的 Floquet 电路中的次谐波振荡

Bo Lv, Shiyun Xia, Ye Tian, Ting Liu, Hongyang Mu, Zhichao Shen, Sijie Wang, Zheng Zhu, Huibin Tao, Fanyi Meng, Jinhui Shi
{"title":"具有频率合成维度的 Floquet 电路中的次谐波振荡","authors":"Bo Lv, Shiyun Xia, Ye Tian, Ting Liu, Hongyang Mu, Zhichao Shen, Sijie Wang, Zheng Zhu, Huibin Tao, Fanyi Meng, Jinhui Shi","doi":"arxiv-2406.18769","DOIUrl":null,"url":null,"abstract":"The period-doubling oscillation emerges with the coexistence between zero and\n{\\pi} modes in Floquet topological insulator. Here, utilized the flexibility of\nthe circuit, we construct the Floquet circuit with frequency-synthetic\ndimension and find the topological-protected deeply-subharmonic oscillations\nwith the period extensively exceeding the doubling-driven period. In the\nconstruction framework, the periodically-driven mechanism is attained by\nimplementing the circuit-oscillator hierarchy with the stepping-variation\nresonances in frequency domain. The zero and {\\pi} modes that arise at the\nFloquet band in the circuit indicate the anomalous boundary-bulk\ncorrespondence. The coexistence of zero and {\\pi} modes, results in a\nsubharmonic oscillation with the extremely-low frequency on the edge of the\nFloquet circuit. Furthermore, we explore the Floquet band with the enhanced\nperiodically-driven strength tailored by the component flexibility of the\ncircuit. Our method provides a flexible scheme to study Floquet topological\nphases, and open a new path for realizing the deeply subwavelength system.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subharmonic oscillations in the Floquet circuit with the frequency-synthesis dimension\",\"authors\":\"Bo Lv, Shiyun Xia, Ye Tian, Ting Liu, Hongyang Mu, Zhichao Shen, Sijie Wang, Zheng Zhu, Huibin Tao, Fanyi Meng, Jinhui Shi\",\"doi\":\"arxiv-2406.18769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The period-doubling oscillation emerges with the coexistence between zero and\\n{\\\\pi} modes in Floquet topological insulator. Here, utilized the flexibility of\\nthe circuit, we construct the Floquet circuit with frequency-synthetic\\ndimension and find the topological-protected deeply-subharmonic oscillations\\nwith the period extensively exceeding the doubling-driven period. In the\\nconstruction framework, the periodically-driven mechanism is attained by\\nimplementing the circuit-oscillator hierarchy with the stepping-variation\\nresonances in frequency domain. The zero and {\\\\pi} modes that arise at the\\nFloquet band in the circuit indicate the anomalous boundary-bulk\\ncorrespondence. The coexistence of zero and {\\\\pi} modes, results in a\\nsubharmonic oscillation with the extremely-low frequency on the edge of the\\nFloquet circuit. Furthermore, we explore the Floquet band with the enhanced\\nperiodically-driven strength tailored by the component flexibility of the\\ncircuit. Our method provides a flexible scheme to study Floquet topological\\nphases, and open a new path for realizing the deeply subwavelength system.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.18769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在弗洛凯拓扑绝缘体中,零模和{pi}模共存时会产生周期加倍振荡。在此,我们利用电路的灵活性,构建了具有频率合成维度的 Floquet 电路,并发现了拓扑保护的深次谐振,其周期大大超过了倍频驱动周期。在构造框架中,周期驱动机制是通过在频域中实现具有步进变化共振的电路-振荡器层次结构来实现的。在电路的 Floquet 波段出现的零模和{pi}模表明了反常的边界-大容量对应关系。零模和{\pi}模的共存导致在弗洛克电路边缘产生频率极低的次谐振。此外,我们还利用电路元件的灵活性,探索了具有增强周期驱动强度的 Floquet 波段。我们的方法为研究 Floquet 拓扑相位提供了一种灵活的方案,为实现深度亚波长系统开辟了一条新路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subharmonic oscillations in the Floquet circuit with the frequency-synthesis dimension
The period-doubling oscillation emerges with the coexistence between zero and {\pi} modes in Floquet topological insulator. Here, utilized the flexibility of the circuit, we construct the Floquet circuit with frequency-synthetic dimension and find the topological-protected deeply-subharmonic oscillations with the period extensively exceeding the doubling-driven period. In the construction framework, the periodically-driven mechanism is attained by implementing the circuit-oscillator hierarchy with the stepping-variation resonances in frequency domain. The zero and {\pi} modes that arise at the Floquet band in the circuit indicate the anomalous boundary-bulk correspondence. The coexistence of zero and {\pi} modes, results in a subharmonic oscillation with the extremely-low frequency on the edge of the Floquet circuit. Furthermore, we explore the Floquet band with the enhanced periodically-driven strength tailored by the component flexibility of the circuit. Our method provides a flexible scheme to study Floquet topological phases, and open a new path for realizing the deeply subwavelength system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信