{"title":"当有理函数遇到虚元:闪电虚元法","authors":"Manuel Trezzi, Umberto Zerbinati","doi":"10.1007/s10092-024-00585-1","DOIUrl":null,"url":null,"abstract":"<p>We propose a lightning Virtual Element Method that eliminates the stabilisation term by actually computing the virtual component of the local VEM basis functions using a lightning approximation. In particular, the lightning VEM approximates the virtual part of the basis functions using rational functions with poles clustered exponentially close to the corners of each element of the polygonal tessellation. This results in two great advantages. First, the mathematical analysis of a priori error estimates is much easier and essentially identical to the one for any other non-conforming Galerkin discretisation. Second, the fact that the lightning VEM truly computes the basis functions allows the user to access the point-wise value of the numerical solution without needing any reconstruction techniques. The cost of the local construction of the VEM basis is the implementation price that one has to pay for the advantages of the lightning VEM method, but the embarrassingly parallelizable nature of this operation will ultimately result in a cost-efficient scheme almost comparable to standard VEM and FEM.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"6 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When rational functions meet virtual elements: the lightning virtual element method\",\"authors\":\"Manuel Trezzi, Umberto Zerbinati\",\"doi\":\"10.1007/s10092-024-00585-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a lightning Virtual Element Method that eliminates the stabilisation term by actually computing the virtual component of the local VEM basis functions using a lightning approximation. In particular, the lightning VEM approximates the virtual part of the basis functions using rational functions with poles clustered exponentially close to the corners of each element of the polygonal tessellation. This results in two great advantages. First, the mathematical analysis of a priori error estimates is much easier and essentially identical to the one for any other non-conforming Galerkin discretisation. Second, the fact that the lightning VEM truly computes the basis functions allows the user to access the point-wise value of the numerical solution without needing any reconstruction techniques. The cost of the local construction of the VEM basis is the implementation price that one has to pay for the advantages of the lightning VEM method, but the embarrassingly parallelizable nature of this operation will ultimately result in a cost-efficient scheme almost comparable to standard VEM and FEM.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00585-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00585-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种闪电虚拟元素法,通过使用闪电近似法实际计算局部虚拟元素法基函数的虚拟部分,从而消除了稳定项。具体而言,闪电虚拟元素法使用有理函数近似计算基函数的虚拟部分,有理函数的极点以指数形式聚集在多边形细分曲面每个元素的角上。这带来了两大优势。首先,先验误差估计的数学分析更加简单,与任何其他非符合伽勒金离散化的数学分析基本相同。其次,闪电 VEM 能够真正计算基函数,这使得用户无需任何重构技术即可获得数值解的点值。VEM 基的局部构造成本是人们为闪电 VEM 方法的优势所必须付出的实施代价,但这一操作令人尴尬的可并行性最终将产生一种几乎可与标准 VEM 和 FEM 相媲美的高性价比方案。
When rational functions meet virtual elements: the lightning virtual element method
We propose a lightning Virtual Element Method that eliminates the stabilisation term by actually computing the virtual component of the local VEM basis functions using a lightning approximation. In particular, the lightning VEM approximates the virtual part of the basis functions using rational functions with poles clustered exponentially close to the corners of each element of the polygonal tessellation. This results in two great advantages. First, the mathematical analysis of a priori error estimates is much easier and essentially identical to the one for any other non-conforming Galerkin discretisation. Second, the fact that the lightning VEM truly computes the basis functions allows the user to access the point-wise value of the numerical solution without needing any reconstruction techniques. The cost of the local construction of the VEM basis is the implementation price that one has to pay for the advantages of the lightning VEM method, but the embarrassingly parallelizable nature of this operation will ultimately result in a cost-efficient scheme almost comparable to standard VEM and FEM.
期刊介绍:
Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation.
The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory.
Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.