线性分数中性延迟微分方程的稳定性分析

IF 1.4 2区 数学 Q1 MATHEMATICS
Calcolo Pub Date : 2024-06-24 DOI:10.1007/s10092-024-00595-z
Jingjun Zhao, Xingchi Wang, Yang Xu
{"title":"线性分数中性延迟微分方程的稳定性分析","authors":"Jingjun Zhao, Xingchi Wang, Yang Xu","doi":"10.1007/s10092-024-00595-z","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the analytical stability region and the asymptotic stability of linear fractional neutral delay differential equations. Employing boundary locus techniques, the stability region of this problem is analyzed. Furthermore, we derive the fundamental solution of linear fractional neutral delay differential equations, and prove the exponential boundedness, the asymptotic stability and the algebraic decay rate. Finally, numerical tests are conducted to verify the theoretical results.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of linear fractional neutral delay differential equations\",\"authors\":\"Jingjun Zhao, Xingchi Wang, Yang Xu\",\"doi\":\"10.1007/s10092-024-00595-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the analytical stability region and the asymptotic stability of linear fractional neutral delay differential equations. Employing boundary locus techniques, the stability region of this problem is analyzed. Furthermore, we derive the fundamental solution of linear fractional neutral delay differential equations, and prove the exponential boundedness, the asymptotic stability and the algebraic decay rate. Finally, numerical tests are conducted to verify the theoretical results.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00595-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00595-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了线性分数中性延迟微分方程的分析稳定性区域和渐近稳定性。利用边界定位技术分析了该问题的稳定区域。此外,我们推导了线性分数中性延迟微分方程的基本解,并证明了指数有界性、渐近稳定性和代数衰减率。最后,通过数值检验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stability analysis of linear fractional neutral delay differential equations

Stability analysis of linear fractional neutral delay differential equations

This paper investigates the analytical stability region and the asymptotic stability of linear fractional neutral delay differential equations. Employing boundary locus techniques, the stability region of this problem is analyzed. Furthermore, we derive the fundamental solution of linear fractional neutral delay differential equations, and prove the exponential boundedness, the asymptotic stability and the algebraic decay rate. Finally, numerical tests are conducted to verify the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Calcolo
Calcolo 数学-数学
CiteScore
2.40
自引率
11.80%
发文量
36
审稿时长
>12 weeks
期刊介绍: Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation. The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory. Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信