{"title":"线性分数中性延迟微分方程的稳定性分析","authors":"Jingjun Zhao, Xingchi Wang, Yang Xu","doi":"10.1007/s10092-024-00595-z","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the analytical stability region and the asymptotic stability of linear fractional neutral delay differential equations. Employing boundary locus techniques, the stability region of this problem is analyzed. Furthermore, we derive the fundamental solution of linear fractional neutral delay differential equations, and prove the exponential boundedness, the asymptotic stability and the algebraic decay rate. Finally, numerical tests are conducted to verify the theoretical results.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of linear fractional neutral delay differential equations\",\"authors\":\"Jingjun Zhao, Xingchi Wang, Yang Xu\",\"doi\":\"10.1007/s10092-024-00595-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the analytical stability region and the asymptotic stability of linear fractional neutral delay differential equations. Employing boundary locus techniques, the stability region of this problem is analyzed. Furthermore, we derive the fundamental solution of linear fractional neutral delay differential equations, and prove the exponential boundedness, the asymptotic stability and the algebraic decay rate. Finally, numerical tests are conducted to verify the theoretical results.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00595-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00595-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stability analysis of linear fractional neutral delay differential equations
This paper investigates the analytical stability region and the asymptotic stability of linear fractional neutral delay differential equations. Employing boundary locus techniques, the stability region of this problem is analyzed. Furthermore, we derive the fundamental solution of linear fractional neutral delay differential equations, and prove the exponential boundedness, the asymptotic stability and the algebraic decay rate. Finally, numerical tests are conducted to verify the theoretical results.
期刊介绍:
Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation.
The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory.
Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.