{"title":"基于广义耦合西尔维斯特张量方程张量格式的无移位准最小残差法","authors":"Mohammad Mahdi Izadkhah","doi":"10.1007/s10092-024-00592-2","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an extension of the transpose-free quasi-minimal residual (TFQMR) method for solving the generalized coupled Sylvester tensor equations. The new algorithm is based on the tensor format of the TFQMR process. We analyze the convergence behavior of this method and present a bound for the residual norm of the method depending on the specific parameter computed by the algorithm. The numerical experiments demonstrate the efficiency of the new method and confirm the theoretical results.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":"8 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transpose-free quasi-minimal residual method based on tensor format for generalized coupled sylvester tensor equations\",\"authors\":\"Mohammad Mahdi Izadkhah\",\"doi\":\"10.1007/s10092-024-00592-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents an extension of the transpose-free quasi-minimal residual (TFQMR) method for solving the generalized coupled Sylvester tensor equations. The new algorithm is based on the tensor format of the TFQMR process. We analyze the convergence behavior of this method and present a bound for the residual norm of the method depending on the specific parameter computed by the algorithm. The numerical experiments demonstrate the efficiency of the new method and confirm the theoretical results.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00592-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00592-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Transpose-free quasi-minimal residual method based on tensor format for generalized coupled sylvester tensor equations
This paper presents an extension of the transpose-free quasi-minimal residual (TFQMR) method for solving the generalized coupled Sylvester tensor equations. The new algorithm is based on the tensor format of the TFQMR process. We analyze the convergence behavior of this method and present a bound for the residual norm of the method depending on the specific parameter computed by the algorithm. The numerical experiments demonstrate the efficiency of the new method and confirm the theoretical results.
期刊介绍:
Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation.
The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory.
Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.