{"title":"将任意平行六面体分割成有符号平铺法","authors":"Joseph Doolittle, Alex McDonough","doi":"10.1007/s00454-024-00664-8","DOIUrl":null,"url":null,"abstract":"<p>It is broadly known that any parallelepiped tiles space by translating copies of itself along its edges. In earlier work relating to higher-dimensional sandpile groups, the second author discovered a novel construction which fragments the parallelepiped into a collection of smaller tiles. These tiles fill space with the same symmetry as the larger parallelepiped. Their volumes are equal to the components of the multi-row Laplace determinant expansion, so this construction only works when all of these signs are non-negative (or non-positive). In this work, we extend the construction to work for all parallelepipeds, without requiring the non-negative condition. This naturally gives tiles with negative volume, which we understand to mean canceling out tiles with positive volume. In fact, with this cancellation, we prove that every point in space is contained in exactly one more tile with positive volume than tile with negative volume. This is a natural definition for a signed tiling. Our main technique is to show that the net number of signed tiles doesn’t change as a point moves through space. This is a relatively indirect proof method, and the underlying structure of these tilings remains mysterious.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fragmenting any Parallelepiped into a Signed Tiling\",\"authors\":\"Joseph Doolittle, Alex McDonough\",\"doi\":\"10.1007/s00454-024-00664-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is broadly known that any parallelepiped tiles space by translating copies of itself along its edges. In earlier work relating to higher-dimensional sandpile groups, the second author discovered a novel construction which fragments the parallelepiped into a collection of smaller tiles. These tiles fill space with the same symmetry as the larger parallelepiped. Their volumes are equal to the components of the multi-row Laplace determinant expansion, so this construction only works when all of these signs are non-negative (or non-positive). In this work, we extend the construction to work for all parallelepipeds, without requiring the non-negative condition. This naturally gives tiles with negative volume, which we understand to mean canceling out tiles with positive volume. In fact, with this cancellation, we prove that every point in space is contained in exactly one more tile with positive volume than tile with negative volume. This is a natural definition for a signed tiling. Our main technique is to show that the net number of signed tiles doesn’t change as a point moves through space. This is a relatively indirect proof method, and the underlying structure of these tilings remains mysterious.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00664-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00664-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fragmenting any Parallelepiped into a Signed Tiling
It is broadly known that any parallelepiped tiles space by translating copies of itself along its edges. In earlier work relating to higher-dimensional sandpile groups, the second author discovered a novel construction which fragments the parallelepiped into a collection of smaller tiles. These tiles fill space with the same symmetry as the larger parallelepiped. Their volumes are equal to the components of the multi-row Laplace determinant expansion, so this construction only works when all of these signs are non-negative (or non-positive). In this work, we extend the construction to work for all parallelepipeds, without requiring the non-negative condition. This naturally gives tiles with negative volume, which we understand to mean canceling out tiles with positive volume. In fact, with this cancellation, we prove that every point in space is contained in exactly one more tile with positive volume than tile with negative volume. This is a natural definition for a signed tiling. Our main technique is to show that the net number of signed tiles doesn’t change as a point moves through space. This is a relatively indirect proof method, and the underlying structure of these tilings remains mysterious.